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Abstract

In this paper, we explore the question of whether pro-
gram understanding tools enhance or change the way that
programmers understand programs. The strategies that pro-
grammers use to comprehend programs vary widely. Pro-
gram understanding tools should enhance or ease the pro-
grammer’s preferred strategies, rather than impose a fixed
strategy that may not always be suitable. We present ob-
servations from a user study that compares three tools
for browsing program source code and exploring software
structures. In this study, 30 participants used these tools
to solve several high-level program understanding tasks.
These tasks required a broad range of comprehension strate-
gies. We describe how these tools supported or hindered the
diverse comprehension strategies used.
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1 Introduction

Program understanding tools should help programmers
to understand programs during maintenance. That is, these
tools should facilitate the comprehension strategies used by
programmers to achieve specific maintenance tasks. How-
ever, there are a wide variety of comprehension strategies
that programmers use. For a major task, maintainers may
need to switch among a number of strategies. Unfortunately,
tool designers may only have an intuitive notion of what fea-
tures are beneficial. A tool may impose strategies that are un-
suitable because of the type of program, because of the kind
of task, or because of the individual user. What is needed are
experimental observations that study the influence of pro-
gram understanding tools on their users when solving real-
istic maintenance tasks. Only then can we be sure that these
tools enhance how programmers understand programs.

This paper describes an experiment in which 30 par-
ticipants were observed performing a variety of program
understanding tasks using three tools: Rigi, SHriMP, and
SNiFF+. Rigi [9] is a reverse engineering system that
presents software subsystem structures using an interac-
tive, multi-window graph editor and displays the source
code through separate text editor windows. The Simple
Hierarchical Multi-Perspective (SHriMP) tool [14] displays
software architectural diagrams using nested graphs. This
interface embeds the source code inside the nodes and inte-
grates a hypertext metaphor for following low-level depen-
dencies with animated panning, zooming, and fisheye-view
actions for viewing high-level structures. The SNiFF+ sys-
tem [12] is a commercial, integrated development environ-
ment for C and C++ that provides source code browsing and
cross referencing features.

Before our experiment, we suspected that each tool pri-
marily supported a specific set of comprehension strategies.
To gain some insight, we focused on observing the strate-
gies used by the participants as they performed a set of high-
level program understanding tasks. We discuss how well
these implicit strategies, embodied by the tools’ features,
supported the set of strategies preferred by the users.

As a result of our observations, we conjecture that to
effectively support software maintenance, program under-
standing tools need to:
� support a combination of comprehension strategies;
� provide ways to easily enter and effortlessly switch be-

tween strategies while solving a task; and
� reduce cognitive overhead as the program is explored.

Section 2 outlines several cognitive models of program
comprehension that have been proposed. Section 3 describes
the evaluated tools and Section 4 details the experiment de-
sign. Section 5 reports on a number of observations that
arose as the users tried to solve several comprehension tasks
with the tools. Section 6 interprets the observations and dis-
cusses how well the tools supported various comprehension
strategies. Finally, Section 7 concludes the paper.



2 Program Comprehension

Researchers have conducted many studies to observe
how programmers understand programs. As a result, sev-
eral cognitive models of program comprehension strategies
have been proposed to describe the behavior of these pro-
grammers.

2.1 Strategies

Bottom-up. Shneiderman [11] proposed that programs
are understood bottom-up, by reading the source code and
then mentally chunking the low-level software artifacts into
meaningful, higher-level abstractions. These abstractions
are further grouped until a high-level understanding of the
program is formed.

Top-down. Brooks [3] suggested that programs are under-
stood top-down, by reconstructing knowledge about the ap-
plication domain and mapping that to the source code. This
strategy begins with a global hypothesis about the program.
This initial hypothesis is refined into a hierarchy of sec-
ondary hypotheses. Verifying or rejecting a hypothesis de-
pends heavily on the presence or absence of beacons (cues).

Knowledge-based. Letovsky [7] theorized that program-
mers are opportunistic processors capable of exploiting ei-
ther bottom-upor top-downcues. This theory has three com-
ponents: a knowledge base that encodes the programmer’s
application and programming expertise; a mental model that
represents the programmer’s current understanding of the
program; and an assimilation process that describes how the
mental model evolves using the programmer’s knowledge
base and program information.

Systematic and as-needed. Littman et al. [8] observed
that programmers use either a systematic approach, reading
the code in detail and tracing through control and data flow,
or they use an as-needed approach, focusing onlyon the code
related to the task at hand.

Integrated approaches. Von Mayrhauser and Vans [18]
combined the top-down, bottom-up, and knowledge-based
approaches into a single metamodel. They proposed that un-
derstanding is built concurrently at several levels of abstrac-
tions by freely switching between the three comprehension
strategies.

2.2 Factors affecting comprehension strategies

Most researchers realize that certain factors will influ-
ence the comprehension strategy adopted by a programmer
[13, 16]. These factors also explain the apparently wide vari-
ation in the comprehension strategies discussed above. The
variations are primarily due to:

� differences among programs,

� aspects of the task at hand, and

� varied characteristics of programmers.

To appreciate how programmers understand programs, these
factors must be considered [13]. These factors are further ex-
plored in Section 4 within the context of our experiment.

With experience, programmers “know” which strategy is
the most effective for the given program and task. A change
of strategy may be needed because of some anomaly of the
program or some peculiarity of the requested task. Program
understanding tools should enhance or ease the program-
mer’s preferred strategies, rather than impose a fixed strat-
egy that may not always be suitable.

The next section describes three tools which can be used
to browse source code for program understanding and soft-
ware maintenance purposes.

3 Program Understanding Tools

Understanding a software program is often a difficult
process because of missing, inconsistent, or even too much
information. The source code often becomes the sole arbiter
of how the system works. Many software visualization and
browsing tools provide information that is useful for pro-
gram understanding. This section describes three such tools
that we studied in a user experiment.

3.1 Rigi

Rigi is a program understanding tool that supports a re-
verse engineering approach consisting of parsing and dis-
covery phases [9]. Parsing the subject source code results in
a flat resource-flow graph that is manipulated and explored
using a graph editor. The subsequent discovery phase is
semi-automatic and involves pattern-recognition skills and
domain knowledge, where the reverse engineer identifies
subsystems in the flat graph that form meaningful abstrac-
tions. These subsystems can be recursively collapsed to
build a layered hierarchy. This hierarchy serves as a back-
bone for navigational purposes in the tool.

In Rigi, a subsystem containment hierarchy is presented
using individual, overlapping windows that each visually
display a specific slice of the hierarchy. Overview windows
show the subsystem hierarchy in a tree-like form, with arcs
between levels to show containment. By default, node labels
in Overview windows are hidden. Children windows show
the children nodes contained in a subsystem. Projection win-
dows flatten a (sub)hierarchy into a single view. Nodes and
arcs in these windows can be filtered by type, and they can
be selected by name and highlighted using a search dialog.
However, Rigi does not directly support searching through



the source code text. Node and arc information windows
provide a detailed report of local dependencies and neigh-
boring nodes. Text editor windows can be opened for certain
low-level nodes to show the relevant source file, positioned
to the start of the appropriate code fragment. The windows
are all distinguished by labels in their title bars.

Rigi’s main focus is its support for uncovering subsys-
tem abstractions and the creation of subsystem hierarchies
This information can be used as a form of documentation for
subsequent program understanding during software mainte-
nance. In the experiment described in this paper, we consid-
ered how Rigi could be used for browsing previously com-
posed hierarchies of subsystem abstractions.

3.2 SHriMP views

For exploring software, the SHriMP visualization tech-
nique [14] uses a nested-graph formalism [5] to present the
structure of a software system in a single window. A nested
graph has composite nodes that contain other nodes, forming
a hierarchical structure that can be navigated. These com-
posite nodes typically represent software subsystems and are
opened to show their children by double clicking them. In
a nested graph, a composite arc represents one or more arcs
between lower-level nodes in the hierarchy. A composite arc
can be opened by double clicking it to show the constituent
arcs (some of which may also be composite).

The SHriMP technique integrates fisheye-view [4] and
pan+zoom [1] approaches for magnifying nodes of interest
in the graph. A fisheye view simultaneously displays both
context and detail, with objects of interest magnified and less
relevant objects demagnified. The pan+zoom approach al-
lows the user to pan and zoom around the view without dis-
tortion, but critical information might be panned off the edge
of the view. Then again, some tasks may not need much
for contextual cues as the programmer focuses on a well-
localized fragment of program code.

As with Rigi, certain low-level software artifacts are tied
to specific fragments of source text (e.g., a function body).
For SHriMP, however, these code fragments are displayed
within the nodes of the nested graph. Moreover, function
calls, data type references, and variable references are pre-
sented as clickable hypertext links in the fragments. SHriMP
integrates this hypertext metaphor for following low-level
dependencies with animated panning, zooming, and fisheye-
view actions over the nested graph. Consequently, follow-
ing a link to another function pans and zooms the view so
that this function’s code is presented within its node. Al-
ternatively, the user can view the hypertext code using the
Netscape Navigator web browser. SHriMP currently lacks a
searching tool, has no filtering capability, and is still some-
what unreliable.

3.3 SNiFF+

SNiFF+ is a commercial software development environ-
ment that provides project management, source code brows-
ing, cross referencing, and searching features [12]. These
features are accessed through several integrated tools, each
with a window containing menus of options. These tools op-
erate on a symbol table that is generated by SNiFF+ from
parsing the source code. The Project Window lists the
header and implementation files of the program. The Sym-
bol Browser accesses the symbol table to display lists of
functions, constants, macros, variables, etc. These symbols
can be filtered by name in the lists. The Source Editor win-
dow displays a view of the source code withcoloring of some
syntactic constructs. The Cross Referencer window displays
a dependency tree of what a symbol refers to or is referred by.
The Retriever window displays the result of a textual search
through the source code. To manage the many windows, a
user can reuse an existing window; to avoid reusing a win-
dow, the user can “freeze” its contents by clicking a check-
box on the window. The windows are all distinguished by
labels in their title bars and differences in interior layout.

4 User Study

This section describes a user study to evaluate the ef-
fectiveness of three program understanding tools on typi-
cal, high-level program understanding tasks. This study was
conducted at the University of Victoria in Spring 1997.

4.1 Goals

We had four main goals in mind.

1. Study the factors affecting the participant’s choice of
comprehension strategy (see Section 2.2).

2. Observe whether the three tools would effectively en-
hance the participant’s preferred comprehension strate-
gies while solving the tasks.

3. Devise a framework for characterizing the more effec-
tive tools.

4. Provide feedback for the developers of the tools.

4.2 Participants

For the experiment, 30 participants were recruited from
a computer science course on human-computer interaction
at the University of Victoria. Five of the participants were
graduate students and 25 were senior undergraduate stu-
dents. Prior to the actual experimental sessions, we asked
each participant to complete a questionnaire about their pro-
gramming experience and relevant domain knowledge.



4.3 Experimental design

Three program understanding tools, Rigi, SHriMP, and
SNiFF+ were compared. Each tool interface was tested by
asking the participants to complete a series of program un-
derstanding tasks under controlled and supervised condi-
tions. The 30 participants were randomly assigned to the
three tools.

A two-hour session with each of the participants con-
tained six time-limited phases: orientation (5 min), train-
ing tasks (20 min), practice tasks (20 min), formal tasks (50
min), post-study questionnaire (15 min), and post-study in-
terview and debriefing (10 min).

Orientation

The experimenter began the experiment by briefly orient-
ing the participant. Each participant was reminded of the
purpose of the experiment—to evaluate the effectiveness of
a program understanding tool. The participant would also
learn some basic features of a tool to help understand soft-
ware. The different phases of the session were outlined and
the participant was assured that the collected information
would remain anonymous. Also, we mentioned that the par-
ticipant should not feel undue pressure to produce the “right”
answer or feel rushed to finish all the tasks in the limited
time. We were more interested in observing how the given
tool was used to solve a particular task.

Training

During the training phase, the experimenter demonstrated
a predefined subset of the tool’s features—minimal, but
enough for the upcoming tasks. Defining a suitable subset
of features was necessary. Omitted but available essential
features could affect the comprehension strategy of the par-
ticipant. Too many tool features could overload and disori-
ent the user. We tried to strike a workable tradeoff, taking a
flexible approach of explaining convenience features as ap-
propriate to receptive users.

Toward the end of training, the experimenter demon-
strated how to solve some simple queries such as finding all
functions called by main() in a small C program.

Practice tasks

The purpose of the practice tasks was to allow the partici-
pant to become familiar with the tool and its finer points in
a freestyle setting. The participant was encouraged to ex-
plore and ask questions about the tool. The practice tasks
involved using the assigned tool to browse a Hangman pro-
gram written in C. This program contained 300 lines of code
in 12 files. These tasks progressed in difficulty to allow the

participant to grasp the tool features and combine them ap-
propriately. For example, one practice task required the par-
ticipant to discover the purpose of a variable called Errors
and to find the functions using this variable.

Formal tasks

During the formal part of the session, the participant per-
formed several tasks on a Monopoly game program. These
tasks were videotaped (with the participant’s permission)
and the experimenter recorded observations. The participant
was encouraged to “think-aloud” as they did the tasks. The
formal tasks were designed to be typical of what a main-
tenance programmer would be asked to do. Also, these
tasks were distinctly different and somewhat broader than
the training and practice tasks. We did not want the par-
ticipant to merely mimic a similar solution from a previous
task. After all, we were interested in observing how the par-
ticipant would choose to solve these tasks with the assigned
tool. These observations are reported in Section 5.

Questionnaire

Upon finishing the formal tasks, the participant was asked to
complete a brief usability questionnaire. The questionnaire
consisted of 15 questions in five sets of three. The questions
in a set were actually subtle rewordings of each other. All the
questions were randomly ordered. The sets were designed to
gather opinions on: overall ease of use; pleasantness of use;
confidence in results generated; ability to generate results;
and ability to find dependency relationships. The question-
naire also provided a space for general comments.

Interview and debriefing

Finally, an informal interview was conducted to stimulate
the participant into revealing thoughts not expressed while
answering the questionnaire.

4.4 Experimenter’s handbook

A detailed experimenter’s handbook was written for each
tool to provide some consistency and control over the run-
ning of each experimental session. General instructions
(common to all tools) outlined the structure of the exper-
iment, the rules of conduct, and various procedures to be
followed by the experimenter. Tool-specific descriptions
contained detailed instructions for each of the experimen-
tal phases. For example, the descriptions of the training and
practice tasks detailed the features to be taught. Attached to
the handbook were forms to be filled out by the experimenter
(observations and interviewquestions) and by the participant
(formal task questions and usability questionnaire). A fresh
copy of the handbook was used for each session.



4.5 Experimental variables

This subsection explores some of the factors that would
affect the participants’ performance and choice of compre-
hension strategy in our experiment.

Test program
The formal tasks involved understanding a text-based,
Monopoly game program, written in C. This program con-
tains 1700 lines of code in 17 files, with only sparse com-
ments. The control flow of this program is fairly complex,
due to some gotos and a table of function pointers for most
commands in the game.

For Rigi and SHriMP, one of the authors created a sub-
system hierarchy for Monopoly using the Rigi graph editor.
The subsystems were mostly based on the modularization
of the source code into files. Higher-level subsystems were
formed to gather related modules together and simplify the
graph. The selection of meaningful subsystem names was
particularly important.

Task complexity
We tried to devise higher-level program understanding tasks
for the formal tasks. Some tasks required the participant to
understand part of the program to answer a question about
its functionality. For example, one task asked the partici-
pant to determine if a certain feature was implemented in the
program. Other tasks required a deeper understanding, ask-
ing the participant to describe how to change the program
to implement a new feature. For example, one task asked
the participant to describe how to change a rule in the game.
However, since the users did not actually need to make the
changes, they could take a nonchalant approach to the main-
tenance tasks and make educated guesses at the solutions.
Observations for most of the assigned tasks are detailed in
Section 5.

User expertise
The level of expertise and skill affects a user’s performance
by contributing significantly to understanding a program or
learning a tool’s interface. A pre-study questionnaire asked
about C programming experience, maintenance experience,
number of years as a programmer, experience writing games,
etc. However, it has been shown that programming expe-
rience does not correlate highly with programming profi-
ciency [17].

Domain knowledge about the Monopoly board game
could be an asset by providing useful preconceptions. To
strive for consistency across participants, we set up a
Monopoly board beside each participant and, if needed, ex-
plained the rules of the game. We encouraged them to review
the rules and use the board throughout the formal tasks.

In the following section, we report on some observations
from the formal tasks in the study.

5 Observations

Due to the focus on complex tasks, the most interest-
ing results were in observing how the users performed the
program understanding tasks with the assigned tool and the
Monopoly program.

The formal tasks resulted from a brainstorming session
among the experimenters. They were designed without de-
tailed knowledge of the code, and were therefore not tai-
lored to suit the code or the program structure. There were
seven tasks in three classes: preparatory (Tasks 1 and 2),
high-level program understanding (Tasks 3, 4, 7), and main-
tenance (Tasks 5 and 6). For brevity, observations of Task
1 (which asked the user to become familiar with the game
of Monopoly) and Task 2 (which asked the user to become
familiar with the Monopoly software) are omitted.

Task 3: In the computer game, how many players can play
at any one time?

In Monopoly, the main() function calls the
getplayers() function, which most users exam-
ined. The getplayers() function prompts the player
to enter a number between one and nine for the desired
number of players. The entered number is then compared
to MAX PL (a macro defined in the monop.h header file).

In SNiFF+, the users looked for MAX PL using the Sym-
bol Browser. However, they often thought that MAX PLwas
a constant or variable and did not think to check the list of
macros. As a last resort, some users used the Retriever to
find the definition of MAX PL.

The parser used by Rigi and SHriMP to generate the
graphs did not emit information about macros. Conse-
quently, there was no MAX PL node in the graph. In Rigi,
some users tried to use its name-based selection feature
to find a MAX PL node. Since this node did not exist,
most users then resorted to searching for “*.h” nodes and
opening the corresponding header files one by one. They
skimmed or searched through each file to find the MAX PL
macro. Most users had difficulties seeing the highlighted
“*.h” nodes in the Overview window, because of the small
size of the nodes. Rescaling the nodes larger was a cumber-
some action in Rigi.

In SHriMP, the users also wanted to search for the def-
inition of MAX PL and thus found the lack of a search tool
frustrating. Without a search tool, the users resorted to pick-
ing out the nodes that represented header files. This process
was feasible since there were only 17 files and a few header
files. Some users said that there should have been a hyper-



link from the occurrence of MAX PL to its definition. How-
ever, the parser could not produce this information for the
hypertext generator.

Task 4: Does the program support a “computer” mode
where the computer will play against one opponent?

From Task 3, many users recalled that thegetplayers()
function prompted for one to nine players. This led many to
believe, incorrectly, that the program supported a computer
mode. However, most users (with some prodding) decided
to check their hypothesis by studying the code further.

In SNiFF+ and Rigi, the main strategy was to search for a
string such as “computer,” “auto,” or “AI.” One SNiFF+ user
looked in the Symbol Browser for a file that implemented
the mode. One Rigi user guessed that there might be strings
like “your turn” and “my turn.” Since there was no computer
mode, these searches did not yield anything useful. Conse-
quently, most SNiFF+ and Rigi users read the code some-
what systematically by following the control flow and look-
ing for clues. The lack of any beacons to support their hy-
pothesis led the users to conclude the mode did not exist.

In SNiFF+, there were several ways to get the defini-
tion of a called function (some more convenient than oth-
ers). Typically, users used the Symbol Browser, Retriever,
or Cross Referencer. However, most users preferred a hy-
pertext approach of clicking or double-clickingon a function
call and jumping to the called function’s definition. They
were perplexed that this did not “work.” Actually, this ac-
tion can be invoked from a menu but was intentionally (and
perhaps unfortunately) left off our minimal feature subset for
training. In most instances, we taught this convenience fea-
ture later in the experiment to avoid any undue frustration.

In Rigi, reading code systematically by following the
control flow is quite cumbersome. The users had to use the
search dialog, enter the name of the called function, click
a button to highlight its node, locate that node visually in
a crowded Overview window, and double-click the node to
open a text editor on the source file containing the function.
Going from an artifact in a graph window to its code in a
text editor was hard enough; doing the opposite was not even
supported. This lack of integration was very annoying to
some users.

In SHriMP, the lack of a search feature was frustrating for
the users. They could not quickly look for a beacon or cue
to verify their belief in a computer mode. These users were
forced to browse the code and follow function calls system-
atically. However, this browsing was fairly easy, aided by
clickable hyperlinks in the code from function calls to their
function bodies. The animated view seemed to help the users
maintain a sense of orientation while browsing the program.

Task 5: There should be a limited total number of ho-
tels and houses; how is this limit implemented and where is
it used? If this functionality is not currently implemented,
would it be difficult to add? What changes would this en-
hancement require?

In the real Monopoly game, there are 32 houses and 12 ho-
tels. The limited total number of houses can be used by sea-
soned players in their playing strategy. For example, by us-
ing up all the houses and not building hotels, other players
may be prevented from getting houses for their properties.

This task was particularly interesting since these limits
were not implemented. Also, hotels were implicitly repre-
sented as five houses, making the required changes more dif-
ficult than first expected by the users.

The participants first looked for some evidence of the
total limits. In SNiFF+, this involved searching for strings
such as “max,” “house,” and “hotel” in the source text. A
few users exploited their Monopolyknowledge and searched
for “32” and “12.” In SNiFF+, the Retriever returned
62 matches for “house,” but only one for “hotel” (in a
printf() string). The users quickly realized that the hotel
limit was likely not implemented. When the search strategy
failed to quickly produce an answer, the users switched to
looking at header files for possible hints, such as related con-
stants or macros. When no limits were clearly evident, the
users resorted to browsing the source code systematically. A
similar initial process occurred for the Rigi users.

In SNiFF+, the users browsed thehouses.cfile, which
seemed appropriate for finding the house limit since it con-
tained the functions buy houses() and buy h() for
buying houses. However, one or two users did not immedi-
ately think of browsing houses.c and became frustrated
trying to find any relevant code.

In Rigi and SHriMP, the subsystem called Buy-
ing&Selling was an important cue, which most users
noticed. The Rigi users spent a lot of time looking at nodes
in the Overview window and opening Children windows,
whereas the SHriMP users found the relevant nodes more
quickly. This was perhaps due to easier navigation in
SHriMP and because Rigi hides node labels by default
in Overview windows. The Buying&Selling subsystem
contained a House subsystem, which in turn contained the
buy houses() and buy h() function nodes.

Once the users found the house buying functions, they
were easily able to suggest the appropriate changes in fairly
general terms. However, most users failed to mention that
the code for selling houses (and breaking up hotels) would
also need to be considered.

Task 6: Where and what needs to be changed in the code to
implement a new rule which states that a player in jail (and
not just visiting) cannot collect rent from anyone landing on



his/her properties?

As people play Monopoly, they may follow popular varia-
tions to the official rules [2]. Implementing such a variation
in the program would be a realistic maintenance task. This
task asks the user to implement a variation where players in
jail lose their citizenship.

A high-level solution is that when a player lands on a
property with houses or hotels, check if the property’s owner
is in jail. Therefore, to fulfill this task in more detail, two
pieces of code needed to be located:

1. code to determine if a player is in jail (and not just vis-
iting), and

2. code to track a player’s position on the board.

We saw two basic approaches used to solve this task, with
some looking for jail related code first and others looking for
player position code first. We suspect the ordering of words
in the task or user experience with board game programs had
an effect.

A common mistake was that many users proposed check-
ing whether the currently active player was in jail (and per-
haps checking if other players land on his properties). Some
realized this approach was wrong and switched to the high-
level solution above.

By this stage in the tasks, most users understood that the
program contained a player data structure. Many guessed
that there would be a field to record if a player was in jail.
There were actually two related fields: in jail and loc.
Many users mistakenly suggested that thein jail variable
be used. However, this variable counted the number of turns
that a player had been in jail and did not accurately reflect
whether the player was in jail. The loc field should have
been compared to a macro called JAIL to test if a player was
truly in jail. Very few users noticed this subtlety.

Many users correctly guessed that they needed to find the
rent functions, to add a condition for not paying rent to a
user in jail. The change needed to be added to the rent()
function defined in the rent.c file. The top of this func-
tion already has a condition for not paying rent when the
owner of the property has the property mortgaged. Some
users realized the similarity of this condition with the nec-
essary change.

In SNiFF+, the rent.c file was evident in a file listing.
In Rigi and SHriMP, however, the Rent subsystem was per-
haps poorly placed in the Buying&Selling subsystem (or the
latter poorly named). Placing the Rent subsystem higher in
the hierarchy might have helped. Interestingly enough, this
did not seem to unduly impact these users (perhaps challeng-
ing the importance of higher-level subsystems for relatively
small programs). In SHriMP, the users browsed the Moving
subsystem, zoomed into the show move() function code,
then followed a hyperlink to rent(). In Rigi, the users
searched for the rent() function by name.

Task 7: Overall, what was your impression of the structure
of the program? Do you think it was well written?

The answers to this task were varied, partly due to the mixed
skill levels of the users. Many Rigi and SHriMP users per-
ceived the subsystem hierarchy as an intrinsic aspect of the
program itself (not partly fabricated). They made comments
like “everything was where I thought it should be” and “the
subsystems had very logical names.” Some users were ap-
palled at the presence of gotos and function pointers and the
absence of comments. Without subsystem abstractions, the
SNiFF+ users tended to focus on the file structure and coding
style.

The followingsection further interprets how the tools en-
hanced program comprehension.

6 Discussion

We believe that program understanding tools should sup-
port a variety of comprehension strategies, facilitate switch-
ing among these strategies, and reduce cognitive overhead
when browsing a large software system. In this section, we
critique the effectiveness of the tools for supportingprogram
comprehension. In addition, we discuss some of the biases
that may have influenced the observed behaviors and de-
scribe areas of further research.

6.1 Support for comprehension strategies

Preferred comprehension strategies not always supported

For all three tools, there were times when the users’ pre-
ferred comprehension strategies were not adequately sup-
ported. For example, SNiFF+ was more suited to bottom-
up approaches; few facilities were available for showing
higher-level information about the program structure. In
Rigi, many users had problems trying to systematically read
code and follow the control flow. In SHriMP, the biggest
problem was the lack of a searching tool, which was often
the desired approach for finding cues or beacons to verify hy-
potheses.

Rigi and SHriMP communicated a mental map of the pro-
gram structure

From the answers to Task 7 and other observations, the
graphical subsystem hierarchy presented by Rigi and
SHriMP was effective at conveying a mental map of the
program. Many users mentioned that the presented structure
was logical and helped them to understand the program.
However, we also suspect that by imposing a structure on
the Monopoly program, the users perceived it as being more
modular than it actually was.



Naming of subsystems critical in Rigi and SHriMP

The naming of subsystem nodes was critical to the effective-
ness of Rigi and SHriMP. For example, the Buying&Selling
subsystem was an important cue when trying to locate the
houses and hotel limits for Task 5. However, a better name
for this subsystem might have been Transactions, since it
also contained the Rent and Mortgage subsystems. The
users found rent-related code by other means in Task 5.

Expressive searching tools lacking in Rigi and SHriMP

In Rigi and SHriMP, the lack of a searching tool to find text
strings in the source code definitely hindered the users. In
Rigi, some users mistakenly thought they were searching for
strings in the code rather than searching for node labels in
the graph. However, the ability to search on node labels was
very useful. In contrast, the SHriMP users felt constrained
when they could not even search for nodes. Some SHriMP
users commented that they could probably do better with a
searching tool such as grep.

“Sightseeing” behaviors observed in SHriMP

We noticed that some users tended to sightsee when they
navigated to a particular part of the program. They would
examine nearby nodes and store that knowledge for later use.
This sort of information gathering is reflective of the oppor-
tunistic behaviors described by Letovsky.

In SHriMP, however, these opportunistic behaviors were
augmented by a feeling of “flying” because of the ani-
mated effects when moving between nodes. Also, previ-
ously browsed SHriMP subsystem nodes acted as impor-
tant navigational cues. In essence, some subsystems became
thumbnail images, serving as a history mechanism to indi-
cate previous paths of interest. Although the code was not
readable in the smaller nodes, the code layout, length, inden-
tation, and colored hyperlinks all provided important recog-
nition cues.

6.2 Support for switching between comprehension
strategies

Of crucial importance is the ability to switch from one
comprehension strategy to another. These behaviors have
been documented by von Mayrhauser and Vans in [19]. We
also observed users frequently switching between a variety
of comprehension strategies during the experiments.

Switching strategies easier in SHriMP

We noticed that the SHriMP tool better supports the inte-
grated cognitionmodel of frequently switching between var-
ious comprehension strategies. We saw users zooming in
and out between the low-level code and more abstract sub-
system levels. Zooming out to higher-level views was often

done when a user paused to rethink a strategy, to obtain more
context, or to switch between subtasks.

In Rigi, navigating from a text editor view of the source
code to the graphical view of the subsystem hierarchy was
not well supported. SNiFF+ was lacking in higher-level,
subsystem views.

6.3 Reducing cognitive overhead

For larger software systems, the true strength of a pro-
gram understanding tool lies in its ability to manage the in-
herently large amounts of information. Although our test
program was relatively small, there were several issues re-
lated to managing complexity, minimizing disorientation,
and reducing cognitive overhead.

Multiple windows disorienting in Rigi and SNiFF+

Both Rigi and SNiFF+ are capable of representing larger
software systems. However, the multiple window approach
used by these tools often disoriented the users. The users
were faced with the difficult task of accurately conceptualiz-
ing and integrating the implicit relationships among the con-
tents of individual windows. In SNiFF+, the reuse of ex-
isting windows was not well accepted by some users. They
preferred to open new windows and wanted windows frozen
by default, but often complained about the multitude of win-
dows that the freezing feature would cause. A few men-
tioned that this aspect of SNiFF+ would be something “to get
used to.”

Fisheye views infrequently used in SHriMP

Fisheye views were thought to be useful, since they provided
the ability to view both detail and context at the same time.
Some users did occasionally use the fisheye view method in
SHriMP, especially when they wanted to see how a node of
interest interacted with the rest of the program. However, we
noticed that users often would not use the fisheye view fea-
ture. Instead, they zoomed in to see detail and then zoomed
out when more context was desired.

There could be several reasons for this behavior. First,
the hypertext code in the nodes already provided some con-
text through the colored hyperlinks to called functions and
referenced data types. Second, the pan+zoom method was
efficiently implemented and, therefore, contextual informa-
tion was just one click away. Third, the SHriMP version
used in the experiment did not support multiple focal points
(a chief advantage of its fisheye algorithm over pan+zoom).
Some users wanted to expand multiple, non-adjacent nodes,
but were unable to do so. Finally, we suspect that the fish-
eye view method is more beneficial when creating subsys-
tem hierarchies, rather than browsing existing hierarchies.
Here, more context is needed when assigning nodes to dif-
ferent subsystems in a subsystem hierarchy.



Filtering effective in Rigi and SNiFF+

Both Rigi and SNiFF+ provide the ability to filter irrelevant
information in their views. These filters were used very ef-
fectively and increased the scalability of these tools consid-
erably. In Rigi, the node labels were filtered in the Overview
windows. This reduced some visual clutter, but the labels
of important subsystem nodes were also filtered. Conse-
quently, the users had to search for nodes by name to high-
light the matching nodes in the Overview, or they had to turn
off the node label filter for a selected set of nodes. Some
users found this awkward.

Information overload in SHriMP

In SHriMP, many users were overwhelmed by the large
amount of information displayed in a single window. The
biggest concern was with the large number of visible arcs.
This concern increased when composite arcs were opened.
The disorientation could have been relieved by the judicious
use of filters (if they had been available). Indeed, two of
the users suggested that all arcs should be hidden by de-
fault. Arcs of a given type or connected to a selected set of
nodes should be displayed only upon request. This feature
might better support an as-needed comprehension strategy.
Improving the access to arcs and effectively managing the
opening and closing of composite arcs are areas for future
research.

6.4 Experimental biases

There were many practical difficulties in running a study
of this complexity. Although we did not entirely prevent ex-
perimental biases from arising, we tried to realize, control,
and minimize them.

In carrying out the study, we used five experimenters.
Small inconsistencies among the sessions run by different
experimenters affected the observations. There were a few
instances where an experimenter forgot to show an essential
feature of a tool, thereby significantly altering the compre-
hension strategies used. Training the experimenters and fol-
lowing the handbooks carefully helped to reduce these prob-
lems.

The use of the Rigi and SHriMP tool designers as exper-
imenters introduced a bias. For example, one SHriMP user
knew the SHriMP designer and worked more intensely with
the tool than usual. To reduce this bias, we rotated the ex-
perimenters among two or three tools, videotaped the formal
tasks for most users, and tried not to reveal the tool designer.

Videotaping and think-aloud likely affected user perfor-
mance [10]. A few users were intimidated by the test sit-
uation, and three chose not to be videotaped. Participation
in the study was also part of a class assignment. However,
the students were not required to participate in the study and
could read some papers instead.

The wording of a task affected the strategies used. For
example, if Task 4 had been reworded to ask the user to ver-
ify that there is no computer mode, the strategy used may
have been initially more systematic. By hinting that there
was a computer mode, coupled with the apparent possibil-
ity of a single player game, the users took a more ad hoc ap-
proach to try to verify that the mode existed.

6.5 Future work

We still need to perform a detailed analysis of the task an-
swers and videotaped experiments. In usability experiments,
however, more useful information is garnered from watch-
ing users and asking for feedback than from the analysis of
videotaped sessions [6]. Videotapes are useful for verifying
details of particular behaviors. However, a meaningful anal-
ysis will require considering all of the factors which could
have influenced the users’ performances.

The experiment described in this paper followed a pi-
lot study described in [15]. In future experiments, we will
study fewer but more experienced participants as they solve
broader software maintenance tasks over a longer period of
time. In addition, we are interested in conducting experi-
ments to observe how tools, such as Rigi and SHriMP, can
be used for creating software documentation.

Meanwhile, the users’ comments together with our ob-
servations from this experiment have resulted in useful feed-
back for the developers of the tools.

7 Conclusion

This paper reports observations from an experiment to
compare three tools (Rigi, SHriMP, and SNiFF+) for brows-
ing program source code and exploring software structure.
In this experiment, we considered the factors which affected
the participant’s choice of comprehension strategy. Impor-
tant factors included the program to be understood, charac-
teristics of the tasks to be solved, as well as programming
expertise and domain knowledge to be exploited.

In general, we noticed that the tools did enhance the
users’ preferred comprehension strategies while solving the
tasks. For example, the ability to view dependency relation-
ships in all three tools was exploited by most of the users. In
SHriMP, the ability to switch seamlessly between high-level
views and source code was considered a desirable feature.

In some instances, however, the tools hindered the users’
progress. The lack of an effective source code searching tool
in Rigi and SHriMP caused some users to change their com-
prehension approach for some of the tasks. In SNiFF+, in-
sufficient high-level information forced some users to adopt
a more bottom-up approach for understanding.



In a previous paper, we devised a list of cognitive design
elements which should be addressed during the design of a
program understanding tool [13]. We hope that these design
elements, together with our observations from this experi-
ment and future experiments, will form the basis of a frame-
work for characterizing more effective program understand-
ing tools.
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