
Understanding Software Systems

Using Reverse Engineering Technologyy

Hausi A. M�uller Kenny Wong Scott R. Tilley

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: fhausi, kenw, stilleyg@csr.uvic.ca

Abstract

Software engineering research has focused primarily
on software construction, neglecting software mainte-
nance and evolution. Observed is a shift in research
from synthesis to analysis. The process of reverse en-
gineering is introduced as an aid in program under-
standing. This process is concerned with the analy-
sis of existing software systems to make them more
understandable for maintenance, re-engineering, and
evolution purposes. Presented is reverse engineering
technology developed as part of the Rigi project. The
Rigi approach involves the identi�cation of software
artifacts in the subject system and the aggregation
of these artifacts to form more abstract system rep-
resentations. Early industrial experience has shown
that software engineers using Rigi can quickly build
mental models from the discovered abstractions that
are compatible with the mental models formed by the
maintainers of the underlying software.

Keywords: Legacy software, program understand-
ing, reverse engineering, software engineering educa-
tion, software evolution, structural redocumentation.

yThis work was supported in part by the British Columbia

Advanced Systems Institute, IBM Canada Ltd., the IBM Cen-

tre for Advanced Studies, the IRIS Federal Centres of Excel-

lence, the Natural Sciences and Engineering Research Council

of Canada, the Science Council of British Columbia, and the

University of Victoria.

Colloquium on Object Orientation in Databases

and Software Engineering; The 62nd Congress

of \L'Association Canadienne Francaise pour
l'Avancement des Sciences (ACFAS)"; (May 16{17,

1994, Montreal, Quebec, Canada).

1 Introduction

Suppose we could turn back time to 1968|to the
�rst software engineering conference held in Garmisch,
Germany. This NATO conference, which was held in
response to the perceived software crisis, introduced
the term software engineering and signi�cantly inu-
enced research and practice in the years to follow.
What advice would we give to those software pioneers,
given our experience and the state-of-the-art in soft-
ware engineering we have today? This advice might
have changed history in the process. Are there soft-
ware engineering problems we face today that did not
exist in 1968?

These software pioneers did not anticipate that their
software, constructed in the 1960's and early 1970's,
would still be used and modi�ed twenty-�ve years
later. Today's developers inherit a huge legacy of
such heritage software systems. Such software includes
telephone switching systems, banking systems, health
information systems, avionics systems, and pervasive
computer vendor products. In switching systems, new

functionality is added periodically to reect the latest
market needs. Banks have to update their systems reg-
ularly to implement new or changed business rules and
tax laws. Health information systems must adapt to
rapidly changing technology and additional services.
Computer vendors are often committed to support-
ing their products (for example, database management
systems) inde�nitely, regardless of age. Evolution is a
natural phenomena for such systems; it is not that
someone forgot a requirement|the requirements in-
evitably change. There will always be old software, as
new software written today will be in use for decades
to come.

These systems are inherently di�cult to understand
and maintain due, in part, to their size and complex-
ity, as well as their evolution history. The average For-



tune 100 company maintains 35 million lines of code
and adds an additional ten percent each year just in
enhancements, updates, and other maintenance. As a
result of maintenance alone, software inventories will
double in size every seven years.

Since legacy systems cannot be replaced without re-
living their entire history, managing long-term soft-
ware evolution is critical. These systems embody sub-
stantial corporate knowledge such as requirements, de-
sign decisions, and business rules that have evolved
over many years and are di�cult to obtain elsewhere.
This knowledge constitutes signi�cant corporate assets
totalling billions of dollars. Consequently, long-term
software maintenance and evolution are as important
(if not more) as new software construction|especially
if we consider the economic impact of these legacy sys-
tems.

The next section discusses the need for increased em-
phasis on software analysis. Section 3 describes an
approach to aiding program analysis and understand-
ing using reverse engineering technologies. Section 4
outlines the Rigi approach to reverse engineering. Sec-
tion 5 summarizes the paper.

2 Balancing act

Our main advice to the software pioneers of 1968
would be to carefully balance software analysis and
software construction e�orts in both research and ed-
ucation. This advice, which might have changed his-
tory, is still valid today.

Over the past three decades, software engineering
research has focused mainly on new software con-
struction and has neglected software maintenance and
evolution. For example, numerous successful tools
and methodologies have been developed for the early
phases of the software life cycle, including require-
ment speci�cations, design methodologies, program-
ming languages, and programming environments. As
such, there has arisen a dramatic imbalance in soft-
ware engineering education, for both academia and
industry, of favoring original program, algorithm, and
data structure construction. There is a need to focus
more on understanding.

Computer science and computer engineering programs
prepare future software engineers with a background
that encourages fresh creation or synthesis. Con-
cepts such as architecture, consistency and complete-

ness, e�ciency, robustness, and abstraction are usu-
ally taught with a bias toward synthesis, even though
these concepts are equally applicable to analysis. The
study of existing, real-world software systems is of-
ten overlooked. Instructors rarely provide assignments
that model the normal mode of operation in industry:
analyzing, understanding, and building upon existing
systems. Contrast this situation with electrical or civil
engineering education, where the study of existing sys-
tems and architectures constitutes a major component
of the curriculum.

Knowledge of architectural concepts in large software
systems is key to understanding legacy software and
to designing new software. These concepts include:
subsystem structures; layered structures; aggregation,
generalization, specialization, and inheritance hierar-
chies; resource-ow graphs; component and depen-
dency classi�cation; event handling strategies; pipes
and �lters; user interface separation; and distributed
and client-server architectures. The importance of ar-
chitecture is now recognized; courses on the founda-
tions of software architecture [1] have recently emerged
at several universities.

The bias toward synthesis has also resulted in a lack
of tools for the software maintainer. To correct the
imbalance, a shift in research from synthesis to anal-
ysis is needed. This would allow the software mainte-
nance and evolution community to catch up. Once the
repertoire of tools and methodologies for analysis be-
comes as re�ned as that for synthesis, software mainte-
nance and evolution will become more tractable. Ex-
perimental software engineering should concentrate on
software evolution. The development of software evo-
lution strategies is a great challenge|and a great op-
portunity.

In 1990, the Computer Science Technology Board of
the U.S. proposed a research agenda for software en-
gineering [2]. Their report concluded that progress in
developing complex software systems was hampered
by di�ering perspectives and experiences of the re-
search community in academia and of software engi-
neering practitioners in industry. The report recom-
mended nurturing a collaboration between academia
and industry, and legitimizing academic exploration
of complex software systems directly in government
and industry. Software engineering researchers should
test and validate their ideas on large, real-world soft-
ware systems. An excellent example of providing such
arrangements in Canada is the IBM Centre for Ad-
vanced Studies (CAS) in Toronto, where there is a
Program Understanding (PU) project.



3 Program understanding via

reverse engineering

One of the most promising approaches to the problem
of software evolution is program understanding. It has
been estimated that �fty to ninety percent of evolution
work is devoted to program comprehension or under-
standing [3]. Hence, easing the understanding process
can have signi�cant economic savings.

Programmers use programming knowledge, domain
knowledge, and comprehension strategies when try-
ing to understand a program. For example, one might
extract syntactic knowledge from the source code and
rely on programming knowledge to form semantic ab-
stractions. Brooks's work on the theory of domain
bridging [4] describes the programming process as one
of constructing mappings from a problem domain to
an implementation domain, possibly through multiple
levels. Program understanding then involves recon-
structing part or all of these mappings. Moreover,
the programming process is a cognitive one involving
the assembly of programming plans|implementation
techniques that realize goals in another domain. Thus,
program understanding also tries to pattern match be-
tween a set of known plans (or mental models) and the
source code of the subject software.

3.1 Reverse engineering

For large legacy systems, the manual matching of such
plans is di�cult. One way of augmenting the program
understanding process is through computer-aided re-

verse engineering. Although there are many forms of

reverse engineering, the common goal is to extract in-
formation from existing software systems to better un-
derstand them. The subject software system is repre-
sented in a form where many of its structural and func-
tional characteristics can be analyzed. This knowl-
edge can then be used to improve subsequent devel-
opment, ease maintenance and re-engineering, and aid
project management [5]. This knowledge can help de-
fend against brittle software systems that resist grace-
ful change. Problems can be exposed and corrected
if reverse engineering is applied preventatively during
evolution. As maintenance and re-engineering costs
for large legacy software systems increase, the impor-
tance of reverse engineering will grow accordingly.

The reverse engineering process involves two distinct
phases [6]. The �rst identi�es the system's current

components and captures their dependencies; the sec-
ond discovers design information and generates system
abstractions. The second, discovery phase of reverse
engineering is a highly interactive and cognitive ac-
tivity. The user may build up hierarchical subsystem
components that embody software engineering princi-
ples such as low coupling and high cohesion [7]. Dis-
covery can also include the reconstruction of design
and requirements speci�cations (often referred to as
the \domainmodel") and the correlation of this model
to the code. One classic use of this information is to
redocument a software system whose documentation
is missing or out-of-date.

Improved understanding of the software is bene�cial
to project management processes [8]. These processes
are complex and involve human elements, funding,
schedules, politics, trends, and marketing. The tech-
nical and organizational complexity of the project can
threaten to overwhelm even the most prepared man-
agers. To make informed decisions, managers need
both a high-level perspective of the entire system and
in-depth information on selected components. This
information is particularly important for risk analysis:
where to allocate scarce resources, where to place per-
sonnel, what is the impact of changes, and where to
focus e�ort for maximal bene�t. It is better to depend
on objective data (veri�able against the actual source
code) than relying only on gut feelings and experience.
The required information entails another perspective
on the software system (complementing the program-
mer's view).

During the reverse engineering process, the source
code is not altered, although additional information
about it is generated. In contrast, the process of re-
engineering typically consists of a reverse engineer-
ing phase followed by a forward engineering phase
that moves from high-level abstractions to physical
implementations and reconstitutes the subject sys-
tem into a new form. Moreover, re-engineering con-
sists of many feedback loops between the old and new
versions|opportunities for understanding to occur.
Re-engineering can help an organization to recoup or
extend its software investment and salvage corporate
knowledge.

In comparison, business process re-engineering re-
examines and streamlines the way businesses work.
Information technology is often introduced into the
workplace to simply automate old ways of doing busi-
ness. Such simple optimizations do not lead to ma-
jor bene�ts. There is a need to rethink these tasks
in an organization-wide setting to better exploit the



computer technology. This form of re-engineering in-
volves changing an organization's fundamental work
processes and is necessary for businesses to survive in
an increasingly competitive world.

Software re-engineering involves many risks. Before
embarking on a signi�cant re-engineering project, the
goals must be very clear. What characterizes a suc-
cessful re-engineering process? What is a \good" re-
engineering technology? What kinds of applications
are amenable to re-engineering? Choosing the right
toolset is critical; one must avoid subscribing to obso-
lete, incomplete, or incompatible methodologies.

3.2 Reverse engineering

approaches

Many research groups have focused their e�orts on
the development of tools and techniques for program
understanding. The major research issues involve the
need for formalisms to represent program behavior and
visualize program execution. Reverse engineering has
many supporting aspects. It may focus on features
such as control ows, global variables, data structures,
and resource exchanges. At a higher semantic level,
it may focus on behavioral features such as memory
usage, uninitialized variables, value ranges, and algo-
rithmic plans. At an even higher level of abstraction,
it may focus on business rules, policies, and responsi-
bilities. Each of these points of investigation must be
addressed di�erently.

There are many commercial reverse and re-engineering
tools available; catalogs such as [9, 10] describe sev-
eral hundred such packages. Most commercial systems
focus on source-code analysis and simple code restruc-
turing, and use the most common form of reverse en-
gineering: information abstraction via program analy-
sis. Such capabilities extend computer-aided software
engineering toolsets.

Research in reverse engineering consists of many di-
verse approaches. Three sample ones are formal trans-
formations, pattern recognition, and reuse-oriented
approaches. Formal transformation approaches in-
clude: concept recognition and transformation [11],
least common abstractions [12], program re�nements
and transformations [13], and meaning-preserving re-
structuring [14]. Pattern recognition approaches look
for matching patterns and include: defect �ltering [15],
syntactic clich�es (SCRUPLE) [16], user interface anal-
ysis [17], graph parsing [18], characterizing design de-
cisions [19], function abstraction [20], information ab-

straction (CIA, CIA++) [21, 22], maverick identi�-
cation [23], and graph queries (GraphLog, G+) [24].
Approaches based on reuse include: reuse-oriented
software development [25], design recovery (DESIRE)
[26], and teleological maintenance (IRENE) [27].

4 The Rigi project

Rigi [28] is a framework under development at the Uni-
versity of Victoria for program understanding, soft-
ware analysis, reverse engineering, and programming-
in-the-large. One major goal is to extract abstrac-
tions from software representations and transfer this
information into the minds of software engineers for
software evolution purposes. The chief bene�t is to
reduce maintenance and evolution costs. The focus is
on summarizing, querying, representing, visualizing,
and evaluating the structure of large, evolving software
systems. One end-product is better documentation.

Reconstructing the design of existing software is es-
pecially important for complex legacy systems. Doc-
umentation has always played an important role in
program understanding. There are, however, great dif-
ferences in documentation needs for software systems
of 1,000 lines versus those of 1,000,000 lines. Typi-
cal software documentation is in-the-small, describing
the program in terms of isolated algorithms and data
structures. Moreover, the documentation is often scat-
tered about on di�erent media. The maintainers have
to resort to browsing the source code and piecing dis-
parate information together to form higher-level struc-
tural models. This process is always arduous; creating
the necessary documents from multiple perspectives
is often impossible. Yet it is exactly this sort of in-
the-large documentation that is needed to expose the
overall architecture of large software systems.

For a large software system, the reconstruction of
the structural aspects of its architecture is bene�cial.
This process may be termed structural redocumenta-

tion. As a result, the overall structure of the sub-
ject system can be derived and some of its architec-
tural design information can be recaptured. Software
structure is the collection of artifacts used by soft-
ware engineers when forming mental models of soft-
ware systems. These artifacts include software compo-

nents such as procedures, modules, and interfaces; de-
pendencies among components such as client-supplier,
inheritance, and control-ow; and attributes such as
component type, interface size, and interconnection
strength. The structure of a system is the organiza-



Scale

ExtensibilityApplicability

Monolithic End-user programmable

10KLOC

10MLOC

Task
specfic

General

purpose

Figure 1: Reverse engineering design space

tion and interaction of these artifacts [29].

4.1 Key requirements

To be considered successful, a reverse engineering tool
must be exible with respect to its applicability to
multiple domains, it must be extensibile with respect
to its functionality, and it must support the analysis
of large (O(106) LOC) programs. These three require-
ments form a design space [30] for reverse engineering
tools, as illustrated in Figure 1.

Flexibility: Because program understanding involves
many di�erent scenarios and target domains, it is
wise to make our approach as exible as possible for
use in many di�erent domains. An approach is ex-
ible if it can be easily adapted to a variety of sit-
uations. In particular, we mean extensibility, tai-
lorability, and con�gurability of the reverse engineer-
ing methodology and supporting environment. Most
reverse engineering tools provide a �xed palette of ex-
traction, selection, �ltering, organization, documen-
tation, and representation techniques. One impor-
tant need is to provide a way for users to extend
the tool's functionality. This may involve user-de�ned
algorithms or integration with other external tools.
Moreover, by making the tool user-programmable,
it becomes domain-retargetable rather than domain-
speci�c|allowing the user to tailor the tool to fully
exploit aspects of the problem that make its solution
easier.

Scalability: E�ective approaches to program under-
standing must be applicable to huge, multi-million
line software systems. Such scale and complexity ne-
cessitates fundamentally di�erent approaches. Pro-
gram representation, search strategies, and human-
computer interfaces that work on systems \in-the-
small" often do not scale up. For very large systems,
the information accumulated during program under-
standing can be over-whelming. Current repository
technology does not easily manage complete and de-
tailed program representations for huge systems. It
may be perfectly acceptable to ignore certain details
for program understanding tasks. To obtain manage-
able repositories, coarser-grained artifacts can be ex-
tracted, partial systems can be incrementally investi-
gated, and irrelevant parts can be ignored. To gain
useful knowledge, the information must be e�ectively
summarized and abstracted. In a sense, a key to pro-
gram understanding is deciding what information is
material and what is immaterial: knowing what to
look for|and what to ignore [31].

4.2 Rigi framework

The most recent results of the Rigi project include: a
reverse engineering environment consisting of a pars-
ing subsystem, a distributed, multi-user repository,
and an interactive graph editor [32]; a representation
for software structure based on (k; 2)-partite graphs
[33]; a reverse engineering methodology [34]; measures
for evaluating the quality of structural abstractions
[35]; a documentation strategy using up-to-date views
[36]; a facility to understanding document structure
[37]; and an extension mechanism via a scripting lan-
guage [38]. Output from this environment can also
serve as input into conceptual modeling, design recov-
ery, and project management processes.

Much work on program understanding still makes
heavy use of human cognitive abilities. There are
tradeo�s in program understanding environments be-
tween what can be automated and what should (or
must) be left to humans. The best solution seems to
lie in a combination of the two. The extraction phase
in Rigi is initially automatic and involves parsing the
source code of the subject system and storing the ex-
tracted artifacts in the repository. This produces a at
resource-ow graph of the software. To manage the
complexity, this phase is followed by a largely semi-
automatic one that exploits human pattern recogni-
tion skills and features language-independent subsys-
tem composition techniques. Rigi depends heavily on



the experience and domain knowledge of the software
engineer using it; the user makes all the important
decisions. Nevertheless, the process is one of synergy
as the user also learns and discovers interesting rela-
tionships by exploring software systems with the Rigi
environment.

Subsystem composition is the methodology used in
Rigi for generating layered hierarchies of subsystems,
thereby reducing the cognitive complexity of under-
standing large software systems. It is a recursive
process whereby building blocks such as data types,
procedures, and subsystems are grouped into com-
posite subsystems. This builds multiple, layered hi-
erarchies for higher-level abstractions [39]. The cri-
teria for identifying these \clusters" depends on the
purpose, audience, and domain. For program under-
standing purposes, the process can be guided by divid-
ing the resource-ow graph using established modu-
larity principles such as low coupling and strong cohe-
sion. Exact interfaces between subsystems and modu-
larity/encapsulation quality measures can be used to
evaluate the generated software hierarchies and assess
the extent of changes. One goal is to expose properties
and anomalies of the software structure for managing
risk and deciding personnel assignments. For example,
highly complex \central" components (as opposed to
simpler \fringe" components) are best handled by the
senior maintainers. The partition can also be based
on other criteria such as business rules, tax laws, mes-
sage paths, personnel assignment, or other semantic
information.

Software engineers rely heavily on internal documen-
tation to help understand programs. Unfortunately,
this documentation is typically out-of-date and soft-
ware engineers end up referring to the source code.
There is a need to link the documentation and source
code together. The Rigi environment eases the task of
redocumenting the subject software by presenting the
results using interactive views (somewhat similar to
database views) [40]. The focus is to construct read-
able, accurate, and up-to-date system documentation.
A view is a bundle of visual and textual frames that
contain, for example, call graphs, overviews, projec-
tions, exact interfaces, and annotations [41]. A view
is an adaptive snapshot that reects the reverse en-
gineering state contained in the graph model, repos-
itory, and editor user interface; retrieving a view re-
constitutes a particular reverse engineering state from
which to highlight pertinent maintenance constraints
or to help illustrate problems. Moreover, this state
captures the actual, operational structure of the soft-
ware. Thus, a view remains up-to-date.

The economic cost of understanding a software system
is signi�cant, especially for every time a new person
must learn the system. The created views can lessen
the time required to understand the system. Pro-
grammers are often assigned to speci�c components
and lack the big picture; managers may understand
the overall design but lack details on speci�c parts.
Views can accurately capture co-existing architectural
decompositions, providing many di�erent perspectives
at various levels of detail for later inspection.

Reverse engineering approaches are diverse and de-
pend on aspects of the application domain, the im-
plementation domain, and the reverse engineering do-
main. It is impossible to know in advance all that will
be needed to understand a software system. What
is needed is exibility and an approach that allows
users to adapt the environment to exploit domain-
speci�c knowledge themselves. Rigi supports a script-
ing language that allows users to customize, combine,
and automate reverse engineering activities in novel
ways. The language allows an analyst to comple-
ment the built-in operations with external, possibly
application-speci�c, algorithms for graph layout, com-
plexity measures, pattern matching, slicing, and clus-
tering. Complex analysis tasks can be automated for
more consistency and repeatability. E�orts are pro-
ceeding to make the user interface and con�guration
settings more user-customizable [42]. This approach
permits analysts to tailor the environment to better
suit their needs, providing a smooth transition be-
tween automatic and semi-automatic reverse engineer-
ing [43].

These results have been applied to several industrial
software systems to validate and evaluate the Rigi ap-
proach to program understanding. In 1990, we an-
alyzed the Practice Manager, a 57000 line COBOL
program for managing physician's practices in British
Columbia [44]. The main purpose of the analysis
was to build up-to-date logical subsystems, assess the
maintainability of the system, and identify compo-
nents for re-engineering. In 1991, we analyzed a 82000
line C program for the isotope separator experiment at
TRIUMF (TRI-University Meson Facility) in Vancou-
ver. Early experience has shown that we can produce
views that are compatible with the mental models used
by the maintainers of the subject software. That is,
the views we create are presenting information about
the system at the right level of abstraction. Over the
past year, we analyzed the source code of the SQL/DS
system as part of the IBM CAS PU project [45, 46].
The goal was to apply reverse engineering technology
to improve the quality of subsequent maintenance.



5 Summary

There will always be old software that needs to be
understood. It is critical for the software industry to
deal e�ectively with the problems of software evolu-
tion and the understanding of legacy software systems.
Since the primary focus of the industry is changing
from completely new software construction to soft-
ware maintenance and evolution, software engineering
research and education must make some major ad-
justments. In particular, more resources should be
devoted to software analysis in balance with software
construction.

Program understanding tools and methodologies ad-
dress the problems of software evolution by helping
software engineers to understanding large and com-
plex software systems. E�ective reverse engineering
technologies can have a signi�cant impact on the main-
tenance and evolution of these systems.

The Rigi environment focuses on the architectural as-
pects of the subject software under analysis. The envi-
ronment provides many ways to identify, explore, sum-
marize, evaluate, and represent software structures.
More speci�cally, it supports a reverse engineering
methodology for identifying, building, and evaluating
layered subsystem hierarchies. These hierarchies are
documented through views|snapshots of reverse en-
gineering states. The views are used to transfer in-
formation about the abstractions to the minds of the
software engineers. A scripting language permits ana-
lysts to adapt the environment to their needs and sup-
port automatic reverse engineering. This methodology
of building subsystems, creating views, and writing
scripts is applicable to other instances of structural un-
derstanding (for example, large technical documents
and hypertext). The results of the Rigi project have
been successfully applied to several industrial software
systems.

References

[1] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software

Engineering Notes, 17(4):40{52, October 1992.

[2] CSTB. Scaling up: A research agenda for software

engineering. Communications of the ACM, 33(9):281{

293, March 1990.

[3] T. A. Standish. An essay on software reuse. IEEE
Transactions on Software Engineering, SE-10(5):494{

497, September 1984.

[4] R. Brooks. Towards a theory of the comprehension of

computer programs. International Journal of Man-

Machine Studies, 18:543{554, 1983.

[5] R. Arnold. Software Reengineering. IEEE Computer
Society Press, 1993.

[6] R. Arnold. Tutorial on software reengineering. In

CSM'90: Proceedings of the 1990 Conference on Soft-

ware Maintenance, (San Diego, California; November
26-29, 1990). IEEE Computer Society Press (Order

Number 2091), November 1990.

[7] G. Myers. Reliable Software Through Composite De-

sign. Petrocelli/Charter, 1975.

[8] S. R. Tilley and H. A. M�uller. Using virtual subsys-

tems in project management. In Proceedings of the
Sixth International Conference on Computer-Aided

Software Engineering (CASE '93), (Institute of Sys-

tems Science, National University of Singapore, Sin-
gapore; July 19-23, 1993), pages 144{153, July 1993.

IEEE Computer Society Press (Order Number 3480-

02).

[9] M. R. Olsem and C. Sittenauer. Reengineering tech-
nology report (Volume I). Technical report, Software

Technology Support Center, August 1993.

[10] N. Zvegintzov, editor. Software Management Tech-

nology Reference Guide. Software Management News

Inc., 4.2 edition, 1994.

[11] W. Kozaczynski, J. Ning, and A. Engberts. Program
concept recognition and transformation. IEEE Trans-

actions on Software Engineering, 18(12):1065{1075,

December 1992.

[12] G. Arango, I. Baxter, P. Freeman, and C. Pid-
geon. TMM: Software maintenance by transforma-

tion. IEEE Software, 3(3):27{39, May 1986.

[13] M. Ward. Proving Program Re�nements and Trans-

formations. PhD thesis, Oxford University, 1988.

[14] W. G. Griswold. Program Restructuring as an Aid

to Software Maintenance. PhD thesis, University of
Washington, 1991.

[15] E. Buss and J. Henshaw. A software reverse engi-

neering experience. In Proceedings of CASCON '91,

(Toronto, Ontario; October 28-30, 1991), pages 55{73.
IBM Canada Ltd., October 1991.

[16] S. Paul and A. Prakash. Source code retrieval using
program patterns. In Proceedings of the Fifth Inter-

national Workshop on Computer-Aided Software En-

gineering (CASE '92), (Montr�eal, Qu�ebec; July 6-10,

1992), pages 95{105, July 1992.

[17] E. Merlo, J. Girard, K. Kontogiannis, P. Panangaden,

and R. D. Mori. Reverse engineering of user interfaces.

In WCRE '93: Proceedings of the 1993 Working Con-

ference on Reverse Engineering, (Baltimore, Mary-

land; May 21-23, 1993), pages 171{179. IEEE Com-

puter Society Press (Order Number 3780-02), May

1993.



[18] C. Rich and L. M. Wills. Recognizing a program's

design: A graph-parsing approach. IEEE Software,

7(1):82{89, January 1990.

[19] S. Rugaber, S. B. Ornburn, and R. J. L. Jr. Recog-

nizing design decisions in programs. IEEE Software,
7(1):46{54, January 1990.

[20] P. A. Hausler, M. G. Pleszkoch, R. C. Linger, and

A. R. Hevner. Using function abstraction to under-

stand program behavior. IEEE Software, 7(1):55{63,
January 1990.

[21] Y. Chen, M. Nishimoto, and C. Ramamoorthy. The C
Information Abstraction System. IEEE Transactions

on Software Engineering, 16(3):325{334, March 1990.

[22] J. E. Grass. Object-oriented design archaeology with

CIA++. Computing Systems, 5(1):5{67, Winter 1992.

[23] R. Schwanke, R. Altucher, and M. Plato�. Dis-

covering, visualizing, and controlling software struc-

ture. ACM SIGSOFT Software Engineering Notes,
14(3):147{150, May 1989. Proceedings of the Fifth

International Workshop on Software Speci�cation and

Design.

[24] M. Consens, A. Mendelzon, and A. Ryman. Visual-
izing and querying software structures. In ICSE'14:

Proceedings of the 14th International Conference on

Software Engineering, (Melbourne, Australia; May
11-15, 1992), pages 138{156, May 1992.

[25] V. R. Basili. Maintenance = reuse-oriented software
development. In Proceedings of the IEEE 1988 Con-

ference on Software Maintenance, pages 3{4, October

1988.

[26] T. J. Biggersta�. Design recovery for maintenance

and reuse. IEEE Software, 22(7):36{49, July 1989.

[27] V. Karakostas. Modelling and maintenance software

systems at the teleological level. Journal of Software
Maintenance: Research and Practice, 2:47{59, 1990.

[28] H. A. M�uller. Rigi { A Model for Software Sys-

tem Construction, Integration, and Evolution based

on Module Interface Speci�cations. PhD thesis, Rice
University, August 1986.

[29] H. L. Ossher. A mechanism for specifying the struc-
ture of large, layered systems. In B. D. Shriver and

P. Wegner, editors, Research Directions in Object-

Oriented Programming, pages 219{252. MIT Press,
1987.

[30] T. G. Lane. Studying software architecture through

design spaces and rules. Technical Report CMU/SEI-

90-TR-18, Software Engineering Institute; Carnegie-

Mellon University, November 1990.

[31] M. Shaw. Larger scale systems require higher-level

abstractions. ACM SIGSOFT Software Engineering
Notes, 14(3):143{146, May 1989. Proceedings of the

Fifth International Workshop on Software Speci�ca-

tion and Design.

[32] H. M�uller, S. Tilley, M. Orgun, B. Corrie, and

N. Madhavji. A reverse engineering environment

based on spatial and visual software interconnection
models. In Proceedings of the Fifth ACM SIGSOFT

Symposium on Software Development Environments

(SIGSOFT '92), (Tyson's Corner, Virginia; Decem-
ber 9-11, 1992), pages 88{98, December 1992. In ACM

Software Engineering Notes, 17(5).

[33] H. A. M�uller. (k; 2)-partite graphs as a structural

basis for the construction of hypermedia applications.
Technical Report DCS-119-IR, University of Victoria,

June 1989.

[34] H. A. M�uller, M. A. Orgun, S. R. Tilley, and J. S. Uhl.

A reverse engineering approach to subsystem struc-

ture identi�cation. Journal of Software Maintenance:
Research and Practice, 5(4):181{204, December 1993.

[35] H. A. M�uller and B. D. Corrie. Measuring the quality

of subsystem structures. Technical Report DCS-193-

IR, University of Victoria, November 1991.

[36] S. R. Tilley, H. A. M�uller, and M. A. Orgun. Docu-

menting software systems with views. In Proceedings
of the 10th International Conference on Systems Doc-

umentation (SIGDOC '92), (Ottawa, Ontario; Octo-

ber 13-16, 1992), pages 211{219. ACM (Order Num-
ber 613920), October 1992.

[37] S. R. Tilley, M. J. Whitney, H. A. M�uller, and M.-

A. D. Storey. Personalized information structures. In

Proceedings of the 11th Annual International Confer-
ence on Systems Documentation (SIGDOC '93), (Wa-

terloo, Ontario; October 5-8, 1993), pages 325{337.

ACM (Order Number 6139330), October 1993.

[38] S. R. Tilley, H. A. M�uller, M. J. Whitney, and

K. Wong. Domain-retargetable reverse engineer-
ing. In Proceedings of the 1993 International Confer-

ence on Software Maintenance (CSM '93), (Montr�eal,

Qu�ebec; September 27-30, 1993), pages 142{151.
IEEE Computer Society Press (Order Number 4600-

02), September 1993.

[39] H. M�uller and J. Uhl. Composing subsystem struc-

tures using (k; 2)-partite graphs. In Proceedings
of the 1990 Conference on Software Maintenance

(CSM '90), (San Diego, California; November 26-29,

1990), pages 12{19, November 1990. IEEE Computer
Society Press (Order Number 2091).

[40] S. R.

Tilley. Documenting-in-the-large vs. documenting-in-

the-small. In Proceedings of the 1993 IBM/NRC CAS

Conference (CASCON '93), (Toronto, Ontario; Octo-
ber 25-28, 1993), pages 1083{1090, October 1993.

[41] K. Wong. Managing views in a program understand-

ing tool. In Proceedings of the 1993 IBM/NRC CAS

Conference (CASCON '93), (Toronto, Ontario; Octo-
ber 25-28, 1993), pages 244{249, October 1993.

[42] S. R. Tilley. Domain-retargetable reverse engineering
II: Personalized user interfaces. In International Con-



ference on Software Maintenance (ICSM '94), (Vic-

toria, BC; September 19-23, 1994), pages 336{342.

IEEE Computer Society Press (Order Number 6330-
02), September 1994.

[43] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A.
M�uller. Programmable reverse engineering. To appear

in the International Journal of Software Engineering

and Knowledge Enginering, 4(4), December 1994.

[44] H. A. M�uller, J. R. M�ohr, and J. G. McDaniel. Ap-
plying software re-engineering techniques to health in-

formation systems. In T. Timmers and B. Blums,

editors, Software Engineering in Medical Informatics,
pages 91{110. Elsevier North Holland, 1991.

[45] K. Wong, S. R. Tilley, H. A. M�uller, and M.-A. D.
Storey. Structural redocumentation: A case study.

To appear in IEEE Software, January 1995.

[46] E. Buss, R. D. Mori, W. M. Gentleman, J. Henshaw,

H. Johnson, K. Kontogiannis, E. Merlo, H. A. M�uller,

J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. R.
Tilley, J. Troster, and K. Wong. Investigating reverse

engineering technologies for the CAS program under-

standing project. IBM Systems Journal, 33(3):477{
500, 1994.


