
Using an Integrated Toolset for Program Understanding

Michael Whitney Kostas Kontogiannis J. Howard Johnson

Morris Bernstein Brian Corrie Ettore Merlo James McDaniel

Renato De Mori Hausi M�uller John Mylopoulos Martin Stanley

Scott Tilley Kenny Wong

Abstract

This paper demonstrates the use of an inte-

grated toolset for program understanding. By

leveraging the unique capabilities of individual

tools, and exploiting their power in combina-

tion, the resultant toolset is able to facilitate

speci�c reverse engineering tasks that would

otherwise be di�cult or impossible. This is

illustrated by applying the integrated toolset

to several typical reverse engineering scenarios,

including code localization, data 
ow analysis,

pattern matching, system clustering, and visu-

alization, using a mid-size production program

as the reference system.

1 Introduction

As the amount of legacy code currently in use

increases, the importance of program under-

standing grows accordingly. Program under-

standing is the process of developing mental

models of a software system's intended archi-

tecture, purpose, and behavior. There have

been numerous research e�orts to develop tools

that provide assistance during the understand-

ing process. These tools adopt a number of dif-

ferent approaches, including pattern-matching,

visualization, and knowledge-based techniques.

Despite successful results from each of these ap-

proaches, it is clear that no single tool or tech-

nique is su�cient by itself and that the software

engineer can best be served through a collection

of tools that complement each other in function-

ality.

Over the past three years, we have been de-

veloping a toolset, called RevEngE (Reverse

Engineering Environment), based on an open

architecture for integrating heterogeneous tools.

The toolset is integrated through a common

repository speci�cally designed to support pro-

gram understanding [1]. Individual tools in the

kit include Ariadne [2], ART [3], and Rigi [4].

Ariadne is a set of pattern matching and de-

sign recovery programs implemented using The

Software Re�nery fromReasoning Systems, Inc.

ART (Analysis of Redundancy in T ext) is a

prototype textual redundancy analysis system.

Rigi is a programmable environment for reverse

engineering and program visualization. Tools

communicate through a 
exible object server

and single global schema implemented using the

Telos information model [5].

This paper shows how the reverse engineering

capabilities provided by the RevEngE toolset

are used to aid program understanding. This

is done by applying the integrated toolset to

selected reverse engineering analysis scenarios

representative of actual program understanding

tasks. No prior knowledge of the subject sys-

tem's source code is assumed.

The CLIPS (C -Language I ntegrated

Production System) system, an expert system

shell developed at NASA's Software Division

Center, is used as a testbed. CLIPS consists

of approximately 60 �les containing over 700

functions implemented in about 30,000 lines of

source code. Although it is small by commercial

standards, it is a nontrivial production applica-

tion which may typically be assigned to one or

two software engineers.

Section 2 of this paper describes reverse engi-

neering tools and techniques that make up the

current RevEngE toolset. Section 3 outlines the

reverse engineering scenarios to which we apply

RevEngE. Section 4 presents the results of our

analysis of the CLIPS system according to these

scenarios. Section 5 summarizes the paper.



2 Tools and techniques

The current tools constituting the RevEngE

toolset can be broadly classi�ed into analysis

engines, visualization interfaces, and integra-

tion mechanisms. In some cases, an individ-

ual tool may provide more than one of these

functions (for example, Rigi can be used for all

three). Individual tools in the RevEngE toolset

communicate through a 
exible object server

and single global schema implemented using the

Telos information model.1

The use of Telos as a global repository and

data integration mechanism exposed a number

of problems which were subsequently addressed.

Most of these problems relate to data volume:

although the repository is able to store large

amounts of information, only small portions

of this data are actually required for a given

analysis. For example, certain analyses in Rigi

require some knowledge about many objects,

though not all information about each object.

Quite often, complete objects are simply too big

to accomplish the desired analyses. Also, some

tools have limitations on the amount of infor-

mation they can hold in their own workspaces.

These workspace memory problems were not

adequately addressed by the original built-in

data retrieval operations supplied by the server,

whereby only complete objects were retrievable.

These requirements drove the inclusion of ap-

propriate data retrieval functionality in the Te-

los server. In particular, the following retrieval

operations are now supported:

� retrieval of complete objects,

� retrieval of all objects belonging to a given

class (taking account of inheritance rela-

tions),

� retrieval of partial objects (with some set

of attribute categories suppressed), and

� retrieval of all information relating to a

given (set of) attribute category(ies).

Corresponding data update commands are also

available. The partial retrieval and update mea-

sures provide better support for the di�erent

1As described in Section 4.5, tools can also commu-

nicate using another mechanism, bypassing the Telos

repository when required.

approaches to data manipulation used by each

tool in the RevEngE toolset.

2.1 ART

ART is a prototype textual redundancy analysis

engine. It generates a set of substrings (\snips")

that covers the source (that is, every charac-

ter of text appears in at least one substring).

A set of substrings is extracted from each lo-

cal context to ensure that redundant matches

are not missed due to di�erent generation pro-

cesses. Matching snips are then identi�ed. The

resultant database of raw matches is translated

into a form that more concisely expresses the

same information to facilitate deeper analysis.

Task-speci�c data reduction is then performed

and the results summarized. This basic process

may be enhanced by doing preprocessing of the

source or synthesis of partial matches from short

exact matches.

2.2 Ariadne

Ariadne is a set of pattern matching, design re-

covery, and program analysis engines. It in-

cludes techniques that perform code localiza-

tion and system clustering. Code localization

is achieved by comparing feature vectors cal-

culated for every program fragment of the sys-

tem and by incorporating a dynamic program-

ming pattern-matching algorithm to compute

the best alignment between two code fragments

(one considered as a model and the second as

input to be matched). Clustering is achieved

by analyzing global data 
ow and data artifacts

(data types, variable names, and other informal

information) shared by program fragments, sug-

gesting the use of similar concepts. Data 
ow

is analyzed by computing the data bindings be-

tween two code fragments. This type of analysis

examines the use of global variables and vari-

ables passed by reference. Data artifacts are

examined by analyzing variable names and data

types de�ned and used in every function (com-

mon references analysis).

In Ariadne, source code is represented within

the knowledge repository as an annotated ab-

stract syntax tree (AST). An AST was cho-

sen as the program representation scheme be-

cause the AST maintains all relevant informa-



tion from the source level. Several �ne-grained

analysis algorithms (for example, slicing, con-

trol 
ow graph analysis, and metrics calcula-

tion) can be directly applied. Nodes in the AST

represent language components (statements and

expressions) and arcs represent relationships be-

tween these language components. For exam-

ple, an IF-statement is represented as an AST

node with three arcs pointing to the condition,

the THEN-part, and the ELSE-part. During Ari-

adne analysis, each AST node is annotated with

control and data 
ow information. It can be a

vector of software metrics; a set of data bindings

with the rest of the system; or a set of keywords,

variable names, and data types. The support

environment is used to analyze and store the

AST and its annotations, which are computed

for every expression and statement node in the

AST.

2.3 Rigi

Rigi2 is a prototype realization of the PHSE:3

an architecture for a meta reverse engineer-

ing environment [6]. It provides a basis upon

which users construct domain-speci�c reverse

engineering environments. It is instantiated for

a particular application domain by specializing

its conceptual model, by extending its core func-

tionality, and by personalizing its user interface.

Rigi is used as part of the RevEngE toolset

primarily as a visualization interface for the

data produced through analyses by other tools.

However, a wide variety of analyses can also be

performed using Rigi itself. This is primarily

due to its scripting facility, which enables it to

integrate third-party tools to perform speci�c

reverse engineering activities, such as special-

purpose graph layout, to aid program under-

standing.

Rigi's interface with the Telos message server

requires a two-way translation mechanism be-

tween the object-oriented language of the server

and Rigi's own relational language RSF (Rigi

S tandard Format). Attributes of Telos objects

become RSF tuples in Rigi. For example, since

only C functions are common to both Rigi and

2In this paper, \Rigi" refers to version V of the Rigi

environment.
3The acronymPHSE, pronounced \fuzzy," stands for

Programmable HyperStructure Editor.

Ariadne, data with the functionName attribute

category for all programming objects de�ned in

the Ariadne AST are received from the Telos

server and internally converted to RSF tuples

by Rigi scripts. The result is that function

objects already present in the Rigi editor re-

ceive new names that correspond to the Rigi

workspace.

3 Scenarios

Most of the e�ort in software maintenance is

spent examining a system's implementation to

understand its behavior and to recover design

information. Code analysis methods are used

in the reverse engineering process to help the

software engineer understand system structure,

determine the scope of requested changes, and

detect design information that may be lost dur-

ing the system's life cycle. Fundamental issues

for program understanding include:

� code representation,

� structural representation of the system

(modules' interaction),

� data 
ow and control 
ow graphs,

� quality and complexity metrics,

� localization of algorithms and plans,

� identi�cation of abstract data types and

generic operations, and

� multiple view system analysis using visual-

ization and analysis tools.

Recovery of a system's design means under-

standing the organization of the system in terms

of modules and their interfaces. Artifacts asso-

ciated with the system's design are the volume

and the complexity of the interfaces, speci�-

cally, of the data interfaces [7].

Analysis tasks for reverse engineering de-

scribed in this paper are the following:

� Data-bindings anal-

ysis: A data binding is a tuple <p, q,

x> where variable x is de�ned by function

p and used by function q. Variable x is ei-

ther a global or is passed by reference to p

and q.



� Common references analysis: A com-

mon reference is a tuple <p, q, x> where

functions p and q de�ne or use variable x.

Variable x is considered a common refer-

ence if it appears with the same name and

data type in both functions.

� Similarity analysis: Five software qual-

ity and complexity metrics have been se-

lected, speci�cally for their sensitivity to

di�erent program features (data 
ow, con-

trol 
ow, fan-out) [8]. These metrics are

used to identify similar code fragments and

to locate error-prone code.

� Subsystem analysis: Common refer-

ences analysis and data-binding analysis

are further used for system analysis. For

example, the user may compute clusters of

functions that de�ne and use at least 2 and

at most 10 variables, or have at least 3 and

at most 15 common references. Moreover,

statistical studies have shown that these

analyses may reveal error-prone modules

[9].

� Redundancy analysis: Noting where

text occurs multiple times in a large source

tree can ease the analysis of cut-and-paste,

preprocessing, and inter-release changes.

The next section describes in more detail the

application of these techniques and how they

are used to assist design recovery of CLIPS.

4 Analysis

The analyses presented in this section are an ap-

plication of the RevEngE toolset to the CLIPS

software system. Although individual analy-

ses of the system by each of the tools in the

toolset can provide useful information, inter-

leaved use of the tools, integrated through the

Telos message server, can produce more sophis-

ticated analyses, and can aid better understand-

ing of the program.

The tools in the RevEngE toolset are com-

bined in a number of ways. ART, Ariadne, and

Rigi can produce raw data from the source code

directly. This data is stored in the repository

Figure 1: Ariadne data bindings

and its structure can be visualized and investi-

gated with Rigi. Analyses are presented on por-

tions of the code that are deemed interesting,

based on the techniques outlined in Section 3.

Ariadne analyses of data bindings, common ref-

erences, and code similarity are performed. Rigi

is used to explore the results of the Ariadne

analyses, as well as performing an analysis of

the combined Ariadne and Rigi generated data.

An ART redundancy analysis is also performed

on the data generated by Ariadne and is visu-

alized with Rigi. These analyses are made pos-

sible by the integration of the tools through the

Telos data repository.

4.1 Data-binding analysis

Figure 1 shows the basic structure of the

data-binding clusters. Each cluster is repre-

sented by a DBClusterRec object which has

three attributes: useSetIds, usingFunctions,

and settingFunctions. useSetIds contains

identi�ers that are used by the functions in

usingFunctions and set by the functions in

settingFunctions.

Preliminary analysis of the cluster data in-

volved simpli�cations such as the removal of un-

connected objects, decomposition into distinct

connected components, and �ltering of singly



connected objects. Application of an o�-line

spring-layout algorithm and a further local lay-

out revealed several meaningful clusters repre-

senting potential system modules. A view from

this analysis is shown in Figure 2.

Note that the variable memory table is a piv-

otal global, which should receive careful atten-

tion by system maintainers. Once this variable

is removed, �ve disconnected subgraphs remain.

The variables within globally referenced data

types and those functions that set or use those

variables are labeled and shown in columns.

Those nodes without names are constructed by

combining DBClusterRec and Module objects

to show interconnections among Functions and

Identi�ers. Of the �ve subgraphs, two are local-

ized in a single source �le; two other subgraphs

are distributed across two source �les each. The

largest subgraph is spread across nine source

�les. From this analysis of common data types,

it appears that the system architecture can be

viewed conceptually as consisting of �ve or more

relatively independent subsystems. The smaller

subsystems appear to be (1) a parser for infer-

ence engine initialization; (2) a parser for infer-

ence rules; (3) a parser for input source code;

and (4) a test pattern generator. The infer-

ence engine itself is a member of the remaining,

larger subsystem.

Another useful result from this analysis is the

identi�cation of key functions that have high

coupling with the rest of the system. For exam-

ple, the cluster in the lower left corner of Fig-

ure 2 consists of �ve functions (purge agenda,

add activation, remove all activations, run, and

clear rule from agenda) de�ned in the source

�le engine.c. This �le is one of the core modules

of the expert system shell. Another example is

the cluster in the top right corner. It consists

of top-level functions dealing with the creation,

deletion, and initialization of \facts" (a concept

in the domain). This kind of analysis serves as a

guiding step for identifying collections of func-

tions from which analysis of the system can be

taken further.

4.2 Common reference analysis

Another analysis that lends itself to useful sub-

system decomposition is the common references

cluster analysis. This type of analysis deter-

mines those identi�ers that are shared among a

set of functions. The results of an analysis of

CLIPS are shown in Figure 3. There are four

non-trivial clusters shown each having functions

in the right column and the identi�ers refer-

enced by those functions in the left column. The

unnamed nodes in the center column merely

indicate interconnections among the functions

and identi�ers.

The four clusters in the �gure represent sets

of functions and shared variables that have

small interfaces to other components in the sys-

tem. The graph in the upper left corner is

spread over six source �les. Each of the other

three graphs are localized in one or two source

�les. One can speculate from the data bindings

and common references analyses that there are

a number of weakly coupled fringe subsystems

and several strongly coupled core subsystems.

The common identi�ers have the same

name and data type in their correspond-

ing functions. For example, consider the

graph in the upper right corner of the �g-

ure. Some of the core functions in the

left column handle traversal of the object

hierarchy (PRINT CLASSES, PRINT SUBCLASSES,

PRINT MEMBERS, INPUT A OBJECT), updating

the object hierarchy (save Subclass,

save Member, read from file), and updating

attribute values (getFieldsNode, putValue-

FunctionMulti, getValueMultiFunction,

modifyValueFunction). All these functions re-

side in the object.c and method.c modules

which indeed are the ones implementing the

object-oriented paradigm in CLIPS. Conclud-

ing, we may argue that common reference anal-

ysis creates clusters of functions that operate

on similar concepts. These functions can be an-

other departure point for �ne-grained analysis.

4.3 Similarity analysis

Another analysis performed by Ariadne is based

on metric values to detect instances of code

cloning. Functions with the same structure and

data
ow attributes will most likely implement

similar algorithms. By examining clusters of

similar functions, the developer may identify

system components that deal with particular

system functionality.

For example, code cloning clusters to-



Figure 2: Preliminary view of clusters

gether several functions (trace off, trace on,

reset command, show requests, and agenda-

command) that reside in �les intrfile.c,

intrexec.c, intrbrws.c. Indeed, these mod-

ules implement the interface component of the

shell.

Another example is the cluster containing

functions get rule num, get next rule, get-

next fact, get next activation, get next-

deffact. These functions

reside in rulemngr.c, factmngr.c, engine.c,

deffacts.c, and analysis.c. These modules

implement fact management, rule management,

and the triggering of rule activation.

4.4 Subsystem analysis

The initial analysis of the combined Ariadne

and Rigi data examines a small subsystem of

the CLIPS program. Because the data provided

by these tools is complimentary, this permits

a more complete and extensive analysis than

would be possible if the tools were used indi-

vidually. Initially, a graph layout algorithm is

used to group logically connected components

of the system together. This analysis reveals

two distinct subsystems, the smaller of which is

shown in Figure 4.

The subsystem contains all of the component

types of the larger graph on a scale small enough

to analyze in detail. From the Ariadne analysis,

it contains a set of six global identi�ers (top left

of the �gure), and their associated DBCluster-

Rec and Module nodes. From the Rigi analysis,

it contains a set of ten locally referenced data

types (bottom left of the �gure).

Common to both the Ariadne and Rigi analy-

ses are the Function nodes (the remaining nodes

in the �gure). The interface of this subsystem

to the rest of the CLIPS program is through

seven function calls. The interface functions

that interact with the subsystem are not shown

in the �gure and the interfaces are represented

by arcs that are only connected to one node.

Five of the seven function interfaces are to an

error-reporting function; therfore, they add lit-



Figure 3: Common reference components

tle to our understanding of the subsystem. The

other interfaces are calls to the getline function

(bottom right corner of the �gure), which is

called by three internal functions and by two

external functions. The getline function does

not call any other functions in the system, and

thus the subsystem has only one entry point and

a large part of the subsystem seems to be un-

used. Looking at the graph layout provided,

the lack of entry points is obvious. On fur-

ther investigation of the code, it is discovered

that the functions why command, how command,

and query command are invoked through func-

tion pointers.

A further analysis of the combined Ariadne

and Rigi data examines the structure of the

shared variables and data types of a given set

of functions. Typically, a given variable is ref-

erenced by one, two, or sometimes three dif-

ferent DBClusterRec nodes. The layout algo-

rithm applied in the previous analysis reveals a

group of twelve variables with a set of associated

DBClusterRec nodes that use �ve or more vari-

ables. Through the DBClusterRec nodes, we

can �nd the Module nodes, which in turn bring

us to the function nodes that reference these

variables. As it turns out, these functions also

reference many of the global data types that

exist in the system as well. The functions are

of interest because of the complex manner in

which they access the set of variables. There

is no other variable usage structure of similar

complexity in the rest of the system.

A view from part of this analysis is given

in Figure 5. In this �gure, we see the ob-

jects of interest arranged in columns. From

left to right we have the Identifier nodes,

the DBClusterRec nodes, the Module nodes,

the Function nodes, and the DataType nodes.

There are twelve global variables that are

shared by twenty-four functions. Twenty-two of

the functions use the variables to control their

execution and ten of the functions change the

states of those variables. Changing any of the

ten set functions can have a signi�cant impact

on the functionality of twenty-two other func-



Figure 4: Subsystem analysis

tions in the system. These functions would be

considered central components and, in a main-

tenance scenario, would likely be assigned to ex-

perienced personnel if they were to be modi�ed.

It is important to note that without the com-

bination of the Ariadne variable data and the

Rigi function call data, this potentially danger-

ous piece of code would not have been identi�ed.

4.5 Redundancy analysis

This subsection illustrates how additional tools

and data are integrated in the environment

without requiring explicit construction of a Te-

los interface. This is made possible through in-

terfacing at Rigi's relational RSF layer, already

used for loose integration of layout programs

that assist with Rigi visualizations. The ad-

vantage of this form of integration is primarily

rapid proof-of-concept realization.

ART was applied to the CLIPS source, with

exact matches of �ve or more lines requested.

A large collection of matches were found and

grouped into clusters. Four complex clusters

were found and their partial order graphs cal-

culated and laid out. The nodes and arcs|

together with position information|were writ-

ten into RSF tuples. The graphical display ca-

pabilities of Rigi were then used to highlight

useful data and hide unessential distracting de-

tail in the search for a better understanding of

the source. Although this source does not con-

tain a large amount of internal textual redun-

dancy, several interesting matches were found.

A collection of 41 �les (852078 characters)

makes up the largest cluster. If textual redun-

dancy is reduced by removing second and sub-

sequent copies of repeated text, the total size is

reduced by 11%. Upon inspection, using editor

tools instantiated via the fileName attribute

of File objects in Rigi windows, most of the

matches are seen to be a result of \boiler plate"

code at the beginnings of �les. However, there

are a number of interesting matches that stand

out when the cluster graph is displayed:



Figure 5: Shared variable analysis

� The �les match.c and drive.c contain a

large number of relatively small matches.

It appears that one of these is partly cloned

from the other. There are also a number of

lines of comments in common that related

to the algorithm, further supporting this

contention.

� Most of the �le prinat.c appears in the

�le object.c. It appears that prinat.c

contains some template code that is used

for constructing object.c.

� Most of the �le methodsFile.c is con-

tained in my methods3.c.

� Most of the �le my source4.c is contained

in my source3.c.

The actual layout in a Rigi window for the �rst

(and most interesting) cluster was accomplished

using Rigi's programming layer and a simple,

interpreted script. The layout is shown in Fig-

ure 6.

There are roughly two rows of nodes in the

�gure: a row of interior nodes (representing

matches) located about halfway up the diagram,

and a row of leaf nodes (representing �les).

Since the vertical coordinate measures the log-

arithm of the size for this layout, we can infer

that the sizes of the �les are nearly the same,

and the sizes of the matches are also nearly the

same, and are much less than the sizes of the

�les. To the right is a set of nodes that are not

highly connected to the rest in the same way

and where the �le sizes are smaller and closer

in size to their matches. The other matches

identi�ed above are mostly among this group of

�les.

Rigi proved to be useful for identifying inter-

esting features. However, the layout algorithm

used in this study requires some improvement;

the treatment of very large clusters will be im-

proved using a number of strategies. In addi-

tion, a Telos schema is being developed that will

associate this �le-level textual analysis with the

other analyses being done.



Figure 6: Rigi view of ART redundancy analysis data

5 Summary

This paper related initial experiments in ap-

plying openly integrated program understand-

ing technologies to a single test system. Data

integration is available at two levels: that of

the knowledge base and message server, and

that of Rigi's relational integration mechanism

and scripting layer. The former requires a well-

designed global schema describing shared data,

while the latter permits rapid prototyping in-

volving previously unmodeled data.

Through the design of the common Telos

schema, plus the ability to \merge" data sets

via end-user programming, integration of other-

wise separate data sets was achieved. This per-

mitted new analyses not possible with any one

tool alone. In particular, the variable data
ow

analyses produced by Ariadne were quite use-

ful when augmenting the Rigi call and datatype

dependency graph; some decomposition criteria

were reinforced with the additional knowledge,

and new criteria became apparent.

These initial experiments have uncovered

many potential avenues for improvement. One

especially noticeable problem, revealed when

Rigi data and Ariadne data were integrated,

was that relationships between data type ob-

jects (provided by Rigi) and variable objects

(provided by Ariadne) were conspicuously ab-

sent. We intend to adjust the RevEngE schema

to accommodate these links to utilize the new

information.

Rigi's scripting layer provides an excellent ve-

hicle for a certain degree of both control and

data integration. However, achieving truly use-

ful data integration at the level of the knowl-

edge base and message-passing layer has proven

to be a challenging task. Each tool views its

data di�erently, and it is not easy to design a

schema that is both complex enough to cover

the data needs of all tools, yet simple enough to

use e�ciently and e�ectively.

One idea for alleviating this problem is to ex-

ploit the ability of data-consuming tools, like

the Rigi editor, to load domain information



stored in the knowledge base, when such an abil-

ity exists. Rigi is currently undergoing enhance-

ments that will permit this.

Acknowledgments

This work was supported in part by the Natu-

ral Sciences and Engineering Research Council

of Canada, the IBM Software Solutions Toronto

Laboratory Centre for Advanced Studies, the

Information Technology Research Centre of On-

tario, and the U.S. Department of Defense.

About the Authors

Morris Bernstein School of Computer Sci-

ence, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. zaphod@cs.mcgill.ca. Mr. Bern-

stein received his B.Sc. and M.Sc degrees

from McGill University. His research inter-

ests include software development, program un-

derstanding, compiler design, and application-

domain languages. He is currently a research

assistant with primary responsibility for the

McGill portion of the RevEngE project.

Brian Corrie Department of Computer

Science, University of Victoria, P.O. Box

3055, Victoria, BC, Canada V8W 3P6.

bcorrie@csr.uvic.ca. Mr. Corrie is employed

as a Research Associate in the Rigi Group at the

University of Victoria. He received his B.Sc.

and M.Sc. degrees in Computer Science from

there in 1988 and 1990, respectively. His pri-

mary research interests include scienti�c visual-

ization, parallel computer systems for graphics,

and scienti�c computing. He is a member of

IEEE Computer Society.

J. Howard Johnson Institute for Infor-

mation Technology, National Research Coun-

cil Canada, Montreal Road, Building M-

50, Ottawa, Ontario, Canada K1A 0R6.

johnson@iit.nrc.ca). Dr. Johnson is a Se-

nior Research O�cer with the Software Engi-

neering Laboratory of the National Research

Council. His current research interest is Soft-

ware Re-engineering and Design Recovery using

full-text approaches. He received his B.Math.

and M.Math. in Statistics from the University

of Waterloo in 1973 and 1974 respectively. Af-

ter working as a Survey Methodologist at Statis-

tics Canada for four years, he returned to the

University of Waterloo and in 1983 completed

a Ph.D. in Computer Science on applications of

�nite state transducers. Since then, he has been

an assistant professor at the University of Wa-

terloo and later a manager of a software devel-

opment team at Statistics Canada before join-

ing NRC.

Kostas Kontogiannis School of Computer

Science, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. kostas@binkley.cs.mcgill.ca.

Mr. Kontogiannis received a B.Sc degree in

Mathematics from the University of Patras,

Greece, and an M.Sc degree in Arti�cial Intel-

ligence from Katholieke Universiteit Leuven in

Belgium. Currently, he is a Ph.D candidate in

the School of Computer Science at McGill Uni-

versity. His interests include plan localization

algorithms, software metrics, arti�cial intelli-

gence, and expert systems.

James G. McDaniel Department of Com-

puter Science, University of Victoria, P.O.

Box 3055, Victoria, BC, Canada V8W 3P6.

jmcdanie@csr.uvic.ca. Dr. McDaniel re-

ceived B.Sc degree in Mechanical Engineering

at Case Western Reserve University, Cleveland,

Ohio, an M.Sc in Electrical Engineering at Cor-

nell University, Ithaca, New York, and a Ph.D

in Computer Science and Health Information

Science at the University of Victoria, B.C. He

has worked in the area of commercial software

consulting and management for �fteen years.

Currently he is a Research Associate for the Rigi

Project at the University of Victoria. His inter-

ests include software engineering, reverse engi-

neering, and networks. He is a member of the

IEEE, ACM, and COACH societies.

Ettore Merlo D�epartement

de G�enie �Electrique (DGEGI), �Ecole Polytech-

nique de Montr�eal, C.P. 6079, Succ. Cen-

tre Ville, Montr�eal, Qu�ebec, Canada H3C 3A7.

merlo@rgl.polymtl.ca. Dr. Merlo graduated

from the University of Turin, Italy, in 1983 and

obtained a Ph.D. degree in computer science

from McGill University in 1989. From 1989 un-

til 1993, he was the lead researcher of the soft-

ware engineering group at the Computer Re-

search Institute of Montreal. He is currently an



assistant professor of computer engineering at
�Ecole Polytechnique de Montr�eal, where his re-

search interests include software re-engineering,

software analysis, and arti�cial intelligence. He

is a member of IEEE Computer Society.

Renato De Mori School of Computer

Science, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. demori@cs.mcgill.ca. Dr. De Mori

received a doctorate degree in Electronic En-

gineering from Politecnico di Torino, Italy, in

1967. Since 1986, he has been a professor and

the director of the School of Computer Sci-

ence at McGill University. In 1991, he became

an associate of the Canadian Institute for Ad-

vanced Research and project leader of the In-

stitute for Robotics and Intelligent Systems, a

Canadian Centre of Excellence. His current

research interests are stochastic parsing tech-

niques, automatic speech understanding, con-

nectionist models, and reverse engineering. He

is the author of many publications in the areas

of computer systems, pattern recognition, arti-

�cial intelligence, and connectionist models. He

is on the board of the following international

journals: the IEEE Transactions on Pattern

Analysis and Machine Intelligence, Signal Pro-

cessing, Speech Communication, Pattern Recog-

nition Letters, Computer Speech, and Language

and Computational Intelligence. He is a fellow

of the IEEE Computer Society.

Hausi A. M�uller Department of Com-

puter Science, University of Victoria, P.O.

Box 3055, Victoria, BC, Canada V8W 3P6.

hausi@csr.uvic.ca. Dr. M�uller is an asso-

ciate professor in the Department of Computer

Science at the University of Victoria, where he

has been since 1986. He received his Ph.D. in

computer science from Rice University in 1986.

From mid 1992 to mid 1993, he was on sabbati-

cal at CAS, working in the program understand-

ing project. His research interests include soft-

ware engineering, software analysis, reverse en-

gineering, re-engineering, programming-in-the-

large, software metrics, and computational ge-

ometry. He is currently a Program Co-Chair of

the International Conference on Software Main-

tenance (ICSM '94) in Victoria and the Interna-

tional Workshop on Computer Aided Software

Engineering (CASE '95) in Toronto. He is a

member of the editorial board of IEEE Trans-

actions on Software Engineering.

JohnMylopoulosDepartment of Computer

Science, University of Toronto, 6 King's Col-

lege Road, Toronto, Ontario, Canada M5S 1A4.

jm@ai.utoronto.ca. Dr. Mylopoulos is a pro-

fessor of computer science at the University of

Toronto. He received his Ph.D. degree from

Princeton University in 1970. His research in-

terests include knowledge representation and

conceptual modeling, covering languages, im-

plementation techniques for large knowledge

bases, and the application of knowledge bases

to software repositories. He is currently leading

a number of research projects and is principal

investigator of both a national and a provin-

cial Centre of Excellence for Information Tech-

nology. His publication list includes more than

120 refereed journal and conference proceedings

papers and three edited books. He is the recipi-

ent of the �rst ever Outstanding Services Award

given out by the Canadian AI Society (1992),

and also a co-recipient of a best paper award at

the 16th International Conference on Software

Engineering.

Martin Stanley Department of Computer

Science, University of Toronto, 6 King's Col-

lege Road, Toronto, Ontario, Canada M5S 1A4.

mts@ai.utoronto.ca. Mr. Stanley received his

M.Sc. degree in computer science from the Uni-

versity of Toronto in 1987. His research inter-

ests include knowledge representation and con-

ceptual modeling, with particular application to

the building of software repositories. He is cur-

rently a research associate in the Department of

Computer Science at the University of Toronto,

with primary responsibility for the Toronto por-

tion of the RevEngE project.

Scott R. Tilley Software Engineering In-

stitute, Carnegie Mellon University, Pitts-

burgh, PA 15213-3890. stilley@sei.cmu.edu.

Dr. Tilley is a Member of the Technical Sta� at

the SEI. He received the Ph.D. degree in Com-

puter Science from the University of Victoria

in 1995. His �rst book on home computing

was published in 1993. His research interests

include end-user programming, hypertext, pro-

gram understanding, reverse engineering, and

user interfaces. He is currently part of the Dis-

ciplined Engineering Program's Reengineering

Center. He is a member of the ACM and the

IEEE.



Michael Whitney Department of Com-

puter Science, University of Victoria, P.O.

Box 3055, Victoria, BC, Canada V8W 3P6.

mwhitney@csr.uvic.ca. Mike Whitney works

as a Research Assistant at the University of Vic-

toria, from whence he received his M.Sc. and

Ph.D. degrees in 1988 and 1993 respectively. He

is not a member of any Communities, Societies,

or Associations.

Kenny Wong Department of Computer

Science, University of Victoria, P.O. Box

3055, Victoria, BC, Canada V8W 3P6.

kenw@csr.uvic.ca. Mr. Wong is a Ph.D. can-

didate in the Department of Computer Science

at the University of Victoria. He worked in the

program understanding project while at CAS

during the summer of 1993 and 1994. His re-

search interests include program understand-

ing, runtime analysis, user interfaces, object-

oriented programming, and software design. He

is a member of the ACM, USENIX, and the

Planetary Society.

References

[1] J. Mylopoulos, M. Stanley, K. Wong, M. Bern-
stein, R. D. Mori, G. Ewart, K. K. amd Et-

tore Merlo, H. M�uller, S. Tilley, and M. Tomic.

Towards an integrated toolset for program un-
derstanding. In Proceedings of the 1994 IBM

CAS Conference (CASCON '94), (Toronto,

ON; October 31 - November 3, 1994), pages 19{
31, November 1994.

[2] K. Kontogiannis, R. DeMori, M. Bernstein, and
E. Merlo. Localization of design concepts in

legacy systems. In H. A. M�uller and M. Georges,

editors, Proceedings of the International Confer-

ence on Software Maintenance (Victoria, B.C.,

Canada; September 19-23, 1994), pages 414{

423, 1994.

[3] H. Johnson. Visualizing textual redundancy in

legacy code. In Proceedings of the 1994 IBM
CAS Conference (CASCON '94), (Toronto,

ON; October 31 - November 3, 1994), pages 9{

18, November 1994.

[4] S. R. Tilley, K. Wong, M.-A. D. Storey, and

H. A. M�uller. Programmable reverse engineer-

ing. International Journal of Software Engineer-

ing and Knowledge Engineering, 4(4):501{520,

December 1994.

[5] J. Mylopoulos, A. Borgida, M. Jarke, and

M. Koubarakis. Telos: Representing knowledge

about information systems. ACM Transactions
on Information Systems, 8(4):325{362, October

1990.

[6] S. R. Tilley. Domain-Retargetable Reverse Engi-

neering. PhD thesis, Department of Computer
Science, University of Victoria, January 1995.

Available as technical report DCS-234-IR.

[7] T. DeMarco. Controlling Software Projects:

Management, Measurements, and Estimation.

Yourdon Press, 1986.

[8] R. Adamon. Literature review on software met-

rics. Technical report, ETH Z�urich, 1987.

[9] R. W. Selby and V. R. Basili. Analysing error-

prone system structure. IEEE Transactions on
Software Engineering, 17(2):141{152, February

1991.


