
A Reverse Engineering Environment

Based on Spatial and Visual Software Interconnection Modelsyz

H.A. M�uller S.R. Tilley M.A. Orgun
|

B.D. Corrie
}

N.H. Madhavji
�

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: fhausi, stilleyg@csr.uvic.ca

Abstract

Reverse engineering is the process of extracting system

abstractions and design information out of existing soft-

ware systems. This information can then be used for

subsequent development, maintenance, re-engineering,

or reuse purposes. This process involves the identi�ca-

tion of software artifacts in a particular subject system,

and the aggregation of these artifacts to form more ab-

stract system representations. This paper describes a

reverse engineering environment which uses the spatial

and visual information inherent in graphical representa-

tions of software systems to form the basis of a software

interconnection model. This information is displayed

and manipulated by the reverse engineer using an inter-

active graph editor to build subsystem structures out of

software building blocks. The spatial component con-

stitutes information about the relative positions of the

meaningful parts of a software structure, whereas the vi-

sual component contains information about how a soft-

ware structure looks. The coexistence of these two rep-

resentations is critical to the comprehensive apprecia-

tion of the generated data, and greatly bene�ts subse-

quent analysis, processing, and decision-making.

yThis work was supported in part by the IRIS Federal Cen-

tre of Excellence, the Natural Sciences and Engineering Research

Council of Canada, the British Columbia Advanced Systems In-

stitute, Science Council of British Columbia, the University of

Victoria, and IBM Canada Ltd.
zThe positions expressed herein are solely the views of the

authors and are not a reection of IBM Canada Ltd.'s position.

Copyright c 1992 Association for Computing Machinery,

Inc. Reprinted, with permission, from SIGSOFT '92: Pro-

ceedings of the Fifth ACM SIGSOFT Symposium on Soft-

ware Development Environments, (Tyson's Corner, Virginia;

December 9-11, 1992), pp. 88{98. In ACM Software Engi-

neering Notes, 17(5).

1 Introduction

Several areas have been identi�ed as critical to improv-

ing software maintenance; recapture technologies are one

of them. Recapture technologies attempt to recover the

original design in an existing software system by using

reverse engineering and various program-understanding

tools. As today's software ages, the task of maintain-

ing it becomes both more complex and more expensive.

Software engineers must spend an inordinate amount of

time attempting to create an abstract representation of

the system's high-level architecture by exploring its low-

level source code. With software maintenance routinely

consuming upwards of 50% of a software product's life-

cycle and overall budget [1], there is a very tangible ad-

vantage to improving it: according to [2], \By 1995, a

20% improvement in software productivity will be worth

$90 billion worldwide."

Software maintenance cannot be performed without a

complete understanding of a subject system. This is a

di�cult task for software that is 10-25 years old and gen-

erally in poor condition. Contributing factors include

the lack of accurate documentation, the sheer size of the

system, the unstructured programming methods used

in the system's design, the fact that the original system

designers and programmers are no longer available, and

the complication that the software has been changed

several times since its �rst release, and has thus evolved

into something di�erent than the original [3]. Through

reverse engineering, the overall structure of the subject

system can be determined and some of its architectural

design information can be recovered. This recovered in-

formation can then be used for subsequent development,

maintenance, re-engineering, or reuse purposes.

Over the past �ve years we have been developing Rigi,1

a versatile system and framework for discovering and

1Rigi is named after a mountain in central Switzerland.

analyzing the structure of large software systems. In

particular, we concentrated on investigating algorithms,

methods, techniques, and tools for the composition, anal-

ysis, presentation, and representation of subsystem struc-

tures. Some of the early work resulted in a graph model

for software structures and a graph editor supporting

the model [4]. The model can be e�ectively used at

all stages of a software product's life-cycle, in the sub-

system decomposition process, modeling software evo-

lution, change analysis and so on.

By software structure we mean a collection of artifacts

that software engineers use to formmental models when

designing, implementing, integrating, inspecting, or an-

alyzing software systems. Artifacts include software

components such as procedures, modules, subsystems,

and interfaces; dependencies among components such as

supplier-client, composition, and control-ow relations;

and attributes such as component type, interface size,

and interconnection strength. The artifacts are stored

in an underlying graph database, and the graph editor

allows users to edit, maintain, and explore the objects

stored in the repository.

More recently, our investigations have been focused on

methods and algorithms for summarizing software struc-

tures by building hierarchies of subsystems [5]. One

of the results is a semi-automatic reverse engineering

method that can serve as a precursor for maintenance

and re-engineering applications, as a front-end for con-

ceptual modeling and design recovery tools, and as input

to project decision-making processes.

Discovering and building subsystem structures is an art.

Our work is based on the premise that an experienced

software engineer will always be able to produce a \bet-

ter" subsystem decomposition than a fully automatic

procedure | given su�cient time. However, the human

designer needs expert assistance from the programming

environment for the tedious and arduous tasks involved

in the composition process, and Rigi provides such help.

We have also experimented extensively with user inter-

face issues regarding the e�ective interaction with and

presentation of subsystem structures. It is di�cult to

convey and communicate the wealth of information gen-

erated as a result of reverse-engineering a subject sys-

tem. This problem is exacerbated by the necessary co-

existence of spatial and visual data.

|
School of Mathematics, Physics, Computing, andElectronics,

Macquarie University, North Ryde, NSW 2109, Australia.
}

Department of Computer Science, Australian National Uni-

versity, GPO Box 4, Canberra, ACT 2601, Australia. E-mail:

bcorrie@cs.anu.edu.au.
�

School of Computer Science, McGill University, 3480

University St., Montr�eal, QC, Canada H3A 2A7. E-mail:

madhavji@opus.cs.mcgill.ca.

The spatial component constitutes information about

the relative positions of the meaningful parts of a soft-

ware structure (i.e., where things are relative to one an-

other) that allow for the systematic exploration of the

software structures (e.g., identi�cation of all the clients

or suppliers of a component). Visual graph representa-

tions (i.e., rendering of nodes and arcs in various for-

mats in a workstation window) aim to exploit the ability

of the human visual system to recognize and appreci-

ate patterns and motifs (e.g., central, fringe, or isolated

components).

We have found that an e�ective interaction with and

presentation of both kinds of information are vital in the

reverse engineering process. This information forms the

basis of a software interconnection model: a graphical

method, augmented with measurements and program-

understanding aids, used to construct subsystem struc-

tures out of software building blocks.

Our approach to reverse engineering is summarized in

the next section. Operations for the presentation of and

interaction with representations of the generated soft-

ware structures are presented in Section 3. Section 4

introduces our notion of a view, a means for e�ectively

manipulating and storing these representations. Sec-

tion 5 illustrates some of the introduced concepts by

presenting a tour through four representative views of

a graphics program. The tour outlines how the results

of this approach can serve as input for software main-

tenance, re-engineering, and project management. Sec-

tion 6 reports on some early �ndings with our reverse-

engineering approach.

2 Reverse engineering approach

The process of reverse engineering a subject system in-

volves two distinct phases [6]:

1. The identi�cation of the system's current compo-

nents and their dependencies.

2. The extraction of system abstractions and design

information.

During the process of reverse engineering the subject

system is not altered, although additional information

about it is generated. In contrast, the process of re-

engineering typically consists of a reverse engineering

phase, followed by a forward engineering or re-imple-

mentation phase which alters the subject system. A

survey of several state-of-the-art program understand-

ing techniques is given in [7]. Here we present a brief

overview of our approach.

The �rst phase of the reverse engineering process|the

automatic extraction of software artifacts|is language-

dependent and essentially involves parsing of the sub-

ject system and storing the artifacts in a repository. Full

parsing is not normally required, since we are only inter-

ested in extracting the pertinent information for the dis-

covery and identi�cation of the structure and properties

of the subject system, and for the subsequent analysis.

Our repository, GRAS, is a database that is speci�cally

designed to represent graph structures [8]. A graph ed-

itor allows the users to edit, maintain, and explore the

objects stored in the repository. The parsing system

currently supports the programming languages C and

COBOL; support for C++ is under development.

The Rigi environment models the underlying software

system as a tree with two branches. One branch is au-

tomatically constructed by the parsing system, and is

not directly manipulated by the reverse engineer. It

contains information at the unit and syntactic intercon-

nection levels [9]. The other branch is constructed semi-

automatically during the second phase of reverse engi-

neering. It represents logical views of the �rst branch.

As such, it contains information at the semantic inter-

connection level.

Our approach to the second phase features language-

independent subsystem composition algorithms, which

generate hierarchies of subsystems [5]. Subsystem com-

position is the process of constructing composite soft-

ware components out of building blocks such as vari-

ables, procedures, modules, and subsystems, which also

involves the computation of exact interfaces for the com-

posed objects. Hierarchical subsystem structures are

formed by imposing equivalence relations on the resource-

ow graphs of the source code. The relations embody

software engineering principles that concern module in-

teractions such as low coupling and strong cohesion [10].

The generated structures embody visual and spatial in-

formation which serve as organizational axes for the

exploration and presentation of the composed subsys-

tem structures. These structures can be augmented

with views: textual (and potentially hypermedia) anno-

tations that highlight di�erent aspects of the software

system under investigation [11]. Our semi-automatic re-

verse engineering methodology can serve as a precursor

for maintenance and re-engineering applications, as a

front-end for conceptual modeling and design recovery

tools, as a documentation and program-understanding

aid for large software systems, and as input to project

decision-making processes.

We have also formulated software quality criteria and

measures based on exact interfaces and established soft-

ware engineering principles to evaluate subsystem struc-

tures [12, 13, 14]. The quality measures quantify the en-

capsulation e�ect of individual modules or subsystems,

as well as the e�ectiveness of module or subsystem com-

positions with respect to separating concerns. In other

words, we measure the strength or cohesion of subsys-

tems and the thickness of the �rewalls among them.

Using these subsystem composition methods, which are

supported by the graph editor, software structures such

as call graphs, module graphs, include �le dependency

graphs, and directory hierarchies can all be summarized,

analyzed, evaluated, and optimized subject to software

engineering principles. Being able to retrieve, browse,

and trace these structures e�ectively is a key to system

comprehension.

In summary, our reverse engineering approach involves:

1. The extraction of relevant system components and

dependencies out of source text, thereby forming

resource-ow graphs.

2. The composition of subsystem hierarchies on top

of these resource-ow graphs, using an interactive

graph editor.

3. The computation of the exact interfaces among the

constructed subsystems by analyzing and propa-

gating the dependencies extracted from the source

code.

4. The evaluation of re-constructed subsystem struc-

tures with respect to established software engineer-

ing principles such as small and few interfaces be-

tween subsystems and high strength within subsys-

tems.

5. The capturing of pertinent views for target audi-

ences which can be recalled, inspected, played back,

and serve as a basis for further investigations and

explorations.

3 Spatial and visual software

interconnection models

The process of reverse engineering involves the identi�-

cation of software artifacts in a particular representation

of a subject system via mental pattern recognition on

the part of the reverse engineer, and the aggregation of

these artifacts to form more abstract system represen-

tations. Graphs are segmented into features, which are

then pattern-matched against individual recollections of

expected structural motifs. The success of this process

of system reconstruction depends crucially on the in-

dividual's recollection of existing structural knowledge

Spatial Visual

Identi�cation of strongly connected components

Identifying the common clients of a component

Identifying the common suppliers of a component

Exploration of software structures

Orientation and navigation

Identifying the neighborhood of a component

Change and impact analysis with respect to a component

Overviews of component dependencies

Overviews of part-of relationships

Projections of subsystems

Identi�cation of central components

Identi�cation of congestion

Identi�cation of disconnected components

Quality of modularizations

Figure 1: Applications of spatial and visual data representations

and on his or her ability to recognize its presence in a

noisy map.

Theories of cognition suggest that imagery involves both

descriptive and depictive information [15]. In the realm

of software structure modeling and analysis, spatial and

visual representations of artifacts seem to be the key to

forming mental models of software structures. The re-

verse engineer exploits both spatial and visual informa-

tion when identifying components and building abstrac-

tions. Software maintainers and project managers, who

interpret the results of the reverse engineering process,

also use spatial and visual information to understand

and analyze subject systems.

The spatial component constitutes information about

the relative positions of the meaningful parts of a soft-

ware structure (i.e., where things are relative to one an-

other). It provides low-level, detailed information con-

cerning the immediate neighborhood of a software arti-

fact in a graphical representation. Spatial information

is the graphical analogy of the syntactic interconnection

model as proposed by Perry [9]. Borrowing the syntax

used in [9] to describe the unit, syntactic, and seman-

tic interconnection models, the spatial interconnection

model has as its set of objects software artifacts, and

has as its set of relations graphical neighborhood infor-

mation such as adjacent components, common suppli-

ers, and so on, which support the operations outlined in

Figure 1.

Spatial IM = (fartifactsg, fneighborhood infog)

The visual component preserves information about how

a software structure looks (e.g., size, shape, or density).

It provides a high-level view of the system; the gestalt

of the entire image. Visual information is the graphical

analogy of the unit interconnection model. The visual

interconnection model has as its set of objects images

of clusters of software artifacts, and bases its set of rela-

tions on information such as the size, shape, and density

of the image, which support the operations outlined in

Figure 1.

Visual IM = (fimagesg, fsize, shape, : : :g)

Taken together, these two graphical representations form

a new type of software interconnection model based

on spatial and visual imagery. The reverse engineer

uses this model, augmented with semantic information

provided by documentation or software engineers, and

other information provided by the Rigi environment such

as measurements of interconnection strength, to com-

pose subsystem structures.

The graph editor supports a variety of operations to

manipulate visual and spatial representations of graph

structures. Figure 1 summarizes and contrasts some of

these applications. The most important visual represen-

tations are overviews and projections. Structural rela-

tions such as function, module, subsystem, and compo-

sition dependencies can all be displayed as Rigi graphs.

Such graph or subgraph overviews can be depicted in

various patterns and arrangements using grouping, scal-

ing, layout, and �ltering operations. Overviews at dif-

ferent levels of detail can be obtained by means of pro-

jections.

For example, given two high-level subsystems, their func-

tion or module dependencies can be generated by simply

adjusting the projection-detail parameter. Such subsys-

tem overviews can be used to identify structural bottle-

necks and anomalies. An example of a structural bottle-

neck is a component that has a high number of incident

arcs. Such bottlenecks can also be identi�ed by selecting

those nodes whose number of incident arcs exceeds the

incident threshold. Fringe or isolated components can

be recognized in a similar fashion. Unnecessary struc-

tural complexity (e.g., components that are in the wrong

module or subsystem) can also be recognized visually.

Graph structures are ideally suited for representing spa-

tial relationships. The Rigi system provides operations

and user interface tools to follow paths and explore

neighborhoods in graphs and hierarchies. For example,

one can identify the set of nodes that are reachable or

are impacted by a given component, or one can select all

the functions that operate on a particular data type. To

investigate the cohesion and coupling properties of sub-

graphs, Rigi provides a variety of selection operations.

For example, one can identify node pairs with high or

low coupling or node pairs that have common clients

and/or suppliers. The set of common clients/suppliers

of two nodes, say x and y, includes all those nodes

that require/provide resources from/to x and y. Again

thresholds, which can be adjusted by the user, are used

to guide these identi�cation processes.

4 Documenting and analyzing

software systems with views

The Rigi system uses views to direct the focus on visual

data and guide the exploration of spatial data. Such

a view represents a particular state and display of a

software model. The exact con�guration and contents of

a set of Rigi windows displayed on a workstation can be

named and saved as a view to a system or user directory.

Subsequently, individual views or sequences of views can

be loaded to explore or analyze particular aspects of a

subject software system.

Di�erent views of the same software model can be used

to address a variety of target audiences and applica-

tions. A view can make a point, highlight pertinent

data, show relevant data while hiding immaterial infor-

mation, sharpen the focus of the reverse engineer, clar-

ify an issue, illustrate a problem, display cross sections

of the underlying software model, or simply save the

current working environment. Views can be collected

into sequences to form related sets of documentation,

to represent guided tours for tutorial purposed, to high-

light system components that need to be analyzed and

understood when performing speci�c maintenance or re-

engineering tasks, to summarize change, impact, or per-

formance analyses, to describe critical paths that ought

to be followed during testing and integration, or to an-

notate critical sections with measurements that serve as

input to decision-making (for example, project priorities

or personnel assignments).

Figure 2 shows an overview of a ray tracing program

used to illustrate the Rigi environment in Section 5.

Such a view might be used by management person-

nel to gain an understanding of the overall architec-

ture and subsystem interaction, or by new employees

just learning the system. Without such views, these

users would be forced to read through many thousands

of lines of source code to even begin to understand the

system's functionality and architecture. Several views

of the same system, at di�erent levels of detail targeted

to diverse users and requirements, are documented and

depicted in Section 5.

Any number of views can be attached to a particular

software model. Views can easily be combined and tai-

lored to form new or alternate views, or manipulated

interactively to explore details of spatial and visual in-

formation that is captured. Using the View Browser,

which simply lists the names of the saved views, se-

quences of related views can conveniently be played back

and forth.

Some operations in Rigi directly a�ect the underlying

software model (e.g., insertions of nodes and arcs), while

others only a�ect the current view (e.g., rendering for-

mats of icons). A Rigi view consists of one or more win-

dows as well as some global state information. The list

below describes the information that is saved in order to

restore the view completely. This information includes

the window and icon formats, the current selection, and

the node and arc �lters.

View documentation

A view is identi�ed by means of a name, and may

be annotated with some free text to explain the

view's purpose.2 A browser widget, which lists the

saved views alphabetically, is used to store and

load individual views.

Window format

The window format information includes the win-

dow's contents, type, size, position (in both world

and screen space), scroll bar positions, and scale

factor with which the data are being displayed.

Icon format

The format of an icon speci�es how it is rendered

in a window. In particular, an icon may be dis-

played with or without its name and with or with-

out its icon type. Icon names and types may be

enabled and disabled for all the icons in a window,

or for just a subset thereof.

Selection

A view may include a selection; that is, a set of

highlighted icons.

Data shown and hidden

When incremental loading is used, of those ob-

jects only the components and dependencies that

2We hope to augment this textual annotationwith multimedia

in the future.

Figure 2: System overview

are loaded from the database into memory are dis-

played. Moreover, only those components and de-

pendencies whose icon and arc types are enabled

(via menu selections) are shown. In addition, se-

lected individual icons and their attached depen-

dencies may be hidden.

5 A tour through Rigi

User interaction with the Rigi system is di�cult to por-

tray without the actual implementation of the system

at hand. Nevertheless, we attempt to illustrate this in-

teraction by describing four representative views of a

subject system. The system under scrutiny is a graph-

ics program; a ray tracer written in C consisting of 30

modules. The views are intended to capture di�erent

applications scenarios for this software system, and to

illustrate some of the representations and concepts in-

troduced in the preceding sections.

To generate an initial call graph of the ray tracer, we

�rst parse the C source code, which is kept in multiple

directories, to extract software artifacts such as data

types, functions and dependencies. The call graph of

the system is then stored and maintained in the graph

database. Using the subsystem identi�cation and com-

position operations provided by the Rigi editor, subsys-

tem hierarchies are then built on top of the initial call

graph, and exact interfaces of the constructed subsys-

tems are computed.

The web depicted in Figure 3 represents the call graph

of the ray tracer after preliminary reverse engineering.

Such a Gordian knot usually cannot be untied with

a single cut as Alexander the Great so cleverly did;

however, a sequence of cuts, which separate sets of re-

lated nodes and arcs, thereby forming subsystems, will

normally do the trick. There are a variety of tools|

besides a sword|for organizing this web of software

structures. Rigi does not o�er a fully automatic pro-

cedure but rather a set of operations, which are applied

interactively in any given order by a software engineer

or reverse engineer, for searching the graph and identi-

fying meaningful subgraphs.

Figure 3: Gordian knot

One possible clustering technique is to search for the

main entry point of the program (e.g., function main)

and then to create a dependency tree of all the routines

that are reachable from this node, as depicted in Fig-

ure 3. As a side e�ect, some unused or dead code is

typically exposed in the process. This dead code is rep-

resented as unattached squares in the lower left-hand

corner of Figure 3.

A second tack might be to identify central components;

that is, components that are connected to more than,

say, n other components (the threshold n can be ad-

justed by the user). The identi�ed components are then

typically used as root nodes for identifying meaningful

subtrees. Sets of related nodes are organized as piles

and, �nally, the piles are collapsed to form subsystems.

This process is repeated for the newly created subsys-

tems and their dependencies, thereby forming a hierar-

chy of subsystems structures. While this process seems

tedious|and it is|an experienced reverse engineer can

build subsystem structures e�ectively and reliably.

Figure 2 exhibits the top level of the constructed sub-

system hierarchy, a representative overview of the ray

tracer. There are numerous strategies in which compo-

sition relations can be imposed on the initial call graph.

However, we are not interested in just any subsystem

composition, but those that expose the overall architec-

ture of the subject system as best as possible, help re-

cover most of the original design decisions, and facilitate

system comprehension. The Rigi editor's capabilities

such as �ltering and searching tools, and parameterized

composition operations allow the user to explore a vari-

ety of alternative subsystem hierarchies and \what if"

scenarios on top of the initial call graph.

The important composition strategies used at the initial

stages of the reverse engineering process to construct

Figure 2 from Figure 3 are (1) clustering data types

with their access functions and methods, (2) identify-

ing and �ltering objects that are immaterial for system

comprehension such as debugging and error-reporting

routines, and (3) identifying and clustering common

library routines to form the Shader Library subsys-

tem. At the later stages of the reverse engineering pro-

cess the following composition strategies are used to

Figure 4: Subsystem interaction

construct higher-level subsystems: (1) composing sub-

systems around central components, and (2) clustering

components with high interconnection strength. The

resultant system consists of two main subsystems: Ray

Tracer and Shader Library. The components of sub-

system Ray Tracer perform the ray tracing rendering

process, whereas the Shader Library components per-

form shading of geometric objects.

Ray Tracer consists of four subsystems: Control|the

top level of the function call hierarchy; Initialization|

a small subsystem for setting up various parameters and

starting up the graph editing environment; Utilities|

all the basic data types, their access functions, and some

other primitive operations; and, �nally, Ray|the basic

ray tracing and rendering subsystem.

Shader Library also consists of four subsystems: SL

Shader|shading of objects with di�erent surface char-

acteristics; SL Primitives|the primitive data types

and their access functions required by the shading op-

eration; SL Utilities|auxiliary shading operations;

and, �nally, SL Light|operations on lighting models.

This view, combined with a simple textual description

such as this one, is a good introduction to the ray trac-

ing system.

The view depicted in Figure 4 shows the interaction

between the two main subsystems: Ray Tracer and

Shader Library. The text window shows the exact de-

pendencies between these two subsystems. Note that

Ray Tracer requires only �ve objects from and pro-

vides only �ve objects to the Shader Library. For

example, the Ray Tracer subsystem provides the Ray

data type to the SLilluminance function in the Shader

Library subsystem. Also note that this subsystem in-

ternalizes 287 dependencies; that is, there are 287 de-

pendencies that have both the client and supplier in

the Ray Tracer system. This indicates that the quality

of this subsystem decomposition is high (i.e., there are

few interfaces between the two subsystems|a good �re-

wall). This kind of interface information is readily avail-

able for any collection of components and dependencies

in the system, and can be used for change analysis and

optimal recompilation strategies [16].

Figure 5: Maintenance view

The Ray Tracer subsystem was designed as an extensi-

ble subsystem using object-oriented techniques. In Fig-

ure 5, note that the subsystems implementing primitive

geometric objects (i.e., Sphere, Polygon, and Quadric)

have similar access functions for creating and rendering

their primitives. Thus, a maintenance programmer can

easily recognize how to integrate a new primitive into

the current system by simply exploring this view and

its interaction with the rest of the system.

The ray tracing system is intended as a development

vehicle for graphics research, and as such is in a con-

tinuous state of change. Our analysis revealed that a

considerable number of functions in Shader Library

are not actually being used by Ray Tracer. The de-

signer of the ray tracer veri�ed our �ndings. The shad-

ing method is not quite as sophisticated as to require

more of the functionality provided by Shader Library.

Moreover, at any one time the system contains a sig-

ni�cant amount of code that was used for debugging

and testing purposes. When a debugging and testing

phase is over, it might be desirable to remove this code

from the system. This is not always a simple task, as

functions calls or data type references can be deleted in

one section of the code without the maintainer realiz-

ing that it is the last reference to that portion of the

code. The isolated icons shown in Figure 3 represent

such dead code.

The four views presented in this section portray various

key features of a real-world software system. We believe

that these views, combined with the above textual de-

scriptions, provide the reader with a basic understand-

ing of the structure and operation of this system as well

as a good starting point for further investigations.

If one views maintenance as reuse-oriented software de-

velopment [17], reverse engineering can bene�t everyone

involved in software production, including maintainers,

developers, documenters, managers, and testers. A re-

cent taxonomy listed key objectives for reverse engineer-

ing [18], including coping with complexity, generating

alternate views, detecting side e�ects, recovering lost

information, and synthesizing higher abstractions. The

views referenced in this section have illustrated how the

Rigi environment addresses each of these requirements.

6 Early experience

In 1990 we applied our reverse engineering techniques

to a 57,000-line COBOL program, the Practice Manager

by Osler Management Inc. of Victoria [19]. The Prac-

tice Manager is a comprehensive system for the manage-

ment of physicians' practices in British Columbia. The

purpose of the analysis was to build up-to-date subsys-

tem structures, to assess the quality of the entire system

with respect to maintenance, and to identify subsystems

that are candidates for re-engineering. The analysis was

performed without any foreknowledge of the system and

its source code. After completion of the analysis, we

presented the derived structures to the chief maintainer

of the system. The structures were easily recognized

by the maintainer and were consistent with the mental

image she had formed of the software over a two-year

period. We were also able to show how to split the li-

brary into multiple components so that the complexity

of the system is signi�cantly reduced. In addition, the

information gained on central and fringe components

was greatly appreciated by the maintainers of the Prac-

tice Manager.

In 1991 we analyzed an 82,000-line physics program, a

control and data logging application written in C for

the isotope separator experiment at TRIUMF (TRI-

University Meson Factory) in Vancouver. The main

objective for this analysis was to identify components

for re-engineering. In late 1992 we are planning to an-

alyze a large commercial database management system

in conjunction with IBM Canada Ltd.

While the �rst phase|the extraction of the resource-

ow graphs and the computation of the exact interfaces|

is su�ciently fast, the second phase|the semiautomatic,

interactive subsystem composition|may take from a

couple of hours for a 30-module system such as the ray

tracer, to a few days for a system consisting of a 100

modules. Nevertheless, this semi-automatic procedure

is still an order of magnitude faster than manual iden-

ti�cation of subsystem structures.

Ideally however, building the subsystem structures of

an entire system including its exact interfaces should

take no longer than compiling the system, particularly if

only a few components or dependencies have been added

or deleted since the last time the system was reverse-

engineered. To alleviate this problem, incremental algo-

rithms have been implemented so that new and updated

modules can easily be integrated with the current soft-

ware model. Thus, after a change to the source code,

the software model can quickly be brought up to date by

only processing the changed modules. This process is

fully automatic: components and dependencies are up-

dated properly without destroying the created subsys-

tem structures. Hence, the database and the software

structures can be kept current at minimal time and cost.

Augmenting the Rigi environment with domain knowl-

edge would enable initial subsystem compositions to be

constructed automatically. This would allow the reverse

engineer to start at a higher level of abstraction than

the call graph (as is currently the case). This generated

structure could be rejected by the reverse engineer, en-

hanced, or altered to suit his or her needs. This area

promises to provide a rich area of research in the future.

7 Summary

This paper presented an approach to reverse engineer-

ing based on spatial and visual software interconnec-

tion models. The Rigi system provides a variety of op-

erations for e�ective interaction with and presentation

of these representations by means of views. Early ex-

perience has shown that the coexistence of these two

representations is critical to the understanding of the

generated data, and greatly bene�ts subsequent analy-

sis, processing, and decision-making. Using these repre-

sentations, software engineers can quickly build mental

models that are compatible with the ones formed by

maintainers of the underlying software. This is a subtle

but vital step in the use of reverse engineering technol-

ogy to meet the challenges of software maintenance and

re-engineering.

References

[1] Nicholas Zvegintzov. Nanotrends. Datamation, pages

106{116, August 1983.

[2] Barry W. Boehm. Improving software productivity.
Computer, 20(9):43{57, September 1987.

[3] Robert N. Britcher. Re-engineering software: A case

study. IBM Systems Journal, 29(4):551{567, 1990.

[4] H.A. M�uller and K. Klashinsky. Rigi | A system for

programming-in-the-large. In ICSE'10: Proceedings of
the 10th International Conference on Software Engi-

neering, (Ra�es City, Singapore; April 11-15, 1988),

pages 80{86, April 1988. IEEE Computer Society Press
(Order Number 849).

[5] H.A. M�uller and J.S. Uhl. Composing subsystem struc-

tures using (k,2)-partite graphs. In Proceedings of

the Conference on Software Maintenance 1990, (San
Diego, California; November 26-29, 1990), pages 12{19,

November 1990. IEEE Computer Society Press (Order

Number 2091).

[6] R.S. Arnold. Tutorial on software reengineering. In

CSM'90: Proceedings of the 1990 Conference on Soft-

ware Maintenance, (San Diego, California; November

26-29, 1990). IEEE Computer Society Press (Order
Number 2091), November 1990.

[7] Santanu Paul, Atul Prakash, Erich Buss, and John Hen-

shaw. Theories and techniques of program understand-

ing. In Proceedings of CASCON'91, (Toronto, Ontario;
October 28-30, 1991), pages 37{53. IBM Canada Ltd.,

October 1991.

[8] T. Brandes and K. Lewerentz. GRAS: A non-standard

database system within a software development envi-

ronment. In Proceedings of the Workshop on Soft-
ware Engineering Environments for programming-in-

the-large, (Harwichport, Maine), pages 113{121, June

1985.

[9] Dewayne E. Perry. Software interconnection models. In

ICSE'9: Proceedings of the 9th International Confer-
ence on Software Engineering, pages 69{69, April 1987.

[10] G.L. Myers. Reliable software through composite design.
Petrocelli/Charter, 1975.

[11] Scott R. Tilley, Hausi A. M�uller, and Mehmet A.

Orgun. Documenting software systems with views.

In Proceedings of SIGDOC'92: The 10th International
Conference on Systems Documentation, (Ottawa, On-

tario; October 13-16, 1992), pages 211{219, October

1992. ACM Order Number 613920.

[12] H.A. M�uller. Verifying software quality criteria using an

interactive graph editor. In Proceedings of the Eighth
Annual Paci�c Northwest Software Quality Conference,

(Portland, Oregon; October 29-31, 1990), pages 228{

241, October 1990. ACM Order Number 613920.

[13] Hausi A. M�uller and Brian D. Corrie. Measuring the

quality of subsystem structures. Technical Report DCS-
193-IR, University of Victoria, November 1991.

[14] Mehmet A. Orgun, Hausi A. M�uller, and Scott R.
Tilley. Discovering and evaluating subsystem struc-

tures. Technical Report DCS-194-IR, University of Vic-

toria, April 1992.

[15] S.M. Kosslyn. Image and Mind. Harvard University
Press, 1980.

[16] Scott R. Tilley. Changing module interfaces. Master's
thesis, University of Victoria, May 1989.

[17] Victor R. Basili. Viewing maintenance as reuse-oriented
software development. IEEE Software, 7(1):19{25, Jan-

uary 1990.

[18] Eliot J. Chikofsky and James H. Cross II. Reverse engi-

neering and design recovery: A taxonomy. IEEE Soft-

ware, 7(1):13{17, January 1990.

[19] H.A. M�uller, J.R. M�ohr, and J.G. McDaniel. Apply-
ing software re-engineering techniques to health infor-

mation systems. In Proceedings of the IMIA Working

Conference on Software Engineering in Medical Infor-
matics (SEMI), (Amsterdam; October 8-10, 1990), Oc-

tober 1990.

