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Abstract

When moving linear documentation into a hypertext system, it is important to distinguish

between referential and structural links; both are needed to model the literary paradigm.

In particular, structural links facilitate navigation, tailoring, and information retrieval by

imposing structure on large documents. Without them, users face the well-known \lost in

hyperspace" syndrome due to disorientation caused by a tangle of referential links in the hy-

pertext web. To be truly e�ective, hypertext systems should support a level of customization

at least equivalent to paper-based documentation systems. The hyperdocument's structure

must be malleable and user-customizable. It should be the reader who decides what is

the best document architecture|not the writer. This paper describes a exible reverse-

engineering approach to creating, representing, and structuring online documentation. The

approach permits the construction and maintenance of personalized information structures:

multiple virtual documents over the same hypertext database.
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1 Introduction

The large body of existing textual documentation presents a serious challenge to the successful introduction

of online and multimedia systems into the workplace. Hypertext systems that only support authoring are

limited in their usefulness; they should (at a minimum) support the browsing of linear documents. What is

needed is a way to smoothly integrate text-based documents with hypertext. It is not su�cient to simply

place the original document into the hyperbase; the document's inherent structure should be extracted
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and represented in its hypertextual counterpart.

Unfortunately, most techniques for converting linear documentation into hypertext have limited structuring

capabilities. Hypertext does o�er an improvement over traditional linear documentation by permitting

navigation through the information web via links. However, for very large online documents, such referential

links by themselves are insu�cient; one needs to impose a structuring mechanism on top of the hypertext

web to support more intuitive navigation and information retrieval.

Before online documentation, people personalized their printed text by writing in the margins, underlining

phrases, and by putting \dog ears" on pages that were of interest to them. With the advent of online doc-

umentation, navigation became easier because of facilities supporting non-linear search, pattern-matching,

and electronic \bookmarks." While such bookmarks shorten navigation time for subsequent searches, they

are essentially one-dimensional: they lack the ability to structure the document as the user would like.

Users should be able to select related pieces of information from a large online document, and organize this

information into a virtual document. Many users would prefer a hierarchical information structure, but

containing only the information pertinent to their particular needs. Others may prefer a non-hierarchical

structure suiting their own tastes and navigational abilities. Because of such personal preferences for doc-

ument structure, it is unlikely that any single choice made by the writer will suit all readers. Ultimately,

it is the reader who decides if the structure of a document is adequate|not the writer.

This paper describes an approach to personalizing document structures. The approach is based on exploit-

ing the parallels between the dual problems of software maintenance and understanding, and document

maintenance and understanding [1]. Conversion of text to structured hypertext is very similar to un-

covering and representing program structure. Our previous work in software maintenance and program

understanding has made use of reverse engineering to recover the structural aspects of the architecture

of large software systems [2]. Reverse engineering is the process of extracting high-level abstractions and

design information out of existing systems. It involves the identi�cation of software artifacts in a partic-

ular representation of a subject system via mental pattern recognition by the software engineer, and the

aggregation of these artifacts to form more abstract structured representations. The basic goals of reverse

engineering as applied to software systems can be successfully applied to the conversion of linear documents

to personalized information structures.

The next section discusses document structure and the conversion of linear text to structured hypertext.

It also introduces personalized information structures as the logical successor to structured hypertext.

Section 3 outlines how these structures are created by our system and describes how the conversion process

is similar in nature to our previous work on software maintenance. Section 4 describes how personalized

information structures are used and gives several examples of their use in our system. Section 5 summarizes

our approach and contributions.



2 Document structure

Because documents are such rich sources of structure information, presenting them from various viewpoints

is essential for an interactive document retrieval system [3]. For example, a typesetter may be interested

in a document's physical appearance, while an editor may be more concerned with its contents [4]. While

printed text has an inherently linear structure, it is not without other structuring mechanisms, such as

aggregation due to section level nesting, and referential relations between spans.1 Hence, textual documents

have (at least) a double structure: one de�ned by inter-span relations, and one induced by the nesting of

sections. In fact, they have other structural dimensions as well; when converting text to hypertext, it is

important to capture and distinguish amongst them.

This section describes the translation of text documents into personalized information structures: linear

text ) hypertext ) structured hypertext ) personalized information structures. The process involves

the automatic translation of the original text document into structured hypertext. During the translation,

the structure inherent in the text document is captured and mapped into hypertext equivalents. We �rst

discuss document structure representation and introduce a formalism used to model textual relations. The

importance of structuring hypertext documents is then discussed. The structural features which must be

extracted from the original documents to model the literary paradigm in the resultant structured hypertext

are presented. Personalized information structures are then introduced as an improvement over structured

hypertext.

2.1 Representing document structure

One way of representing document structure is with a semantic network: a labeled, directed graph. Each

node in the graph represents an object, and each arc represents relations between objects. Semantic

networks have been used in many areas for knowledge representation, including software engineering [6]

and hypertext [7]. Since the central role of all hypertext systems is that of linking text together, semantic

networks are well suited to representing them. Objects in the semantic network may be spans or they may

be navigation nodes (which hold indirect pointers to the spans). In fact, one could have a network entirely

devoid of text, with just the \hypertext backbone" to structure the document. The semantic and logical

connections in the text may be represented as typed links in the hypertext.

The structuring information inherent in a semantic network and the relations among nodes and arcs may be

described using interconnection models (IM's). IM's are a formalism used to describe relationships among

objects as a set of tuples [8]: IM = (fobjectsg, frelationshipsg) . This set of tuples conveniently maps to a

graph structure, with the objects being nodes and the relationships being attributed arcs between the nodes.

Hence, interconnection models may be used to represent document structure and to model relationships

in hypertext. As a formalism, they also have the advantage of allowing us to perform structure queries on

the hypertext. Such queries can only be carried out if the structure is well-de�ned [9].

1We use the term \span" [5] to refer to arbitrary textual units.



2.2 Structured hypertext

The main disadvantage of using a simple (at) semantic network to represent hypertext is that very little

structure is imposed. It is useful to explore the analogy between the evolution of structured programming

and the development of hypertext [10, 11, 12]. Links as described in Section 2.1 are analogous to goto

statements in programming languages. Just as a multitude of goto's renders a program incomprehensible,

a multitude of links in a hypertext system renders the document equally incomprehensible. Early programs

were riddled with goto's, until structured programming reduced the need for them; hypertext systems need

a similar structuring facility.

The well-known \lost in hyperspace" syndrome has been attributed to disorientation caused by a tangle

of links in the hypertext web. The proliferation of links is often due to the weak link discipline enforced

by a system using a simple node/link mechanism, allowing unrestricted linking among arbitrary objects

[13]. Such linking is very powerful, but potentially disorienting [14]. The same freedom which provides

hypertext's exible structure and browsing capabilities may also be the direct cause of one of its greatest

problems [15]. For users, disorientation may occur when browsing. For authors, the lack of design principles

when creating associative links does not foster the creation of a consistent conceptual model [16].

Some of the solutions that have been proposed to the classical problem of user disorientation within a

hypertext web include: maps, multiple windows, history lists, and tour/path mechanisms. Unfortunately,

these methods do not scale up well for large hyperdocuments. A more successful approach is through the

use of composite nodes; they reduce web complexity and simplify its structure by clustering nodes together

to form more abstract, aggregate objects [17]. Composite nodes deal with sets of nodes as unique entities,

separate from their components. They act as approximations to their constituent nodes [18], and may be

used to capture high-level relationships.

One of the most important relationships in document structure is that of inclusion. It is created by the

nesting of section levels in the document. Composite nodes may be used to represent document sections,

giving rise to a cluster hierarchy in which leaf nodes contain spans and internal nodes represent document

sections. Since composite nodes may be nested to an arbitrary depth, they are well-suited to represent

the classical hierarchical organization of documents. Because hierarchies supply structural information not

available in a directed graph, it is important to capture this relationship [19].

A hierarchy is often the optimal form for expository texts, making structured hypertext even more impor-

tant in conveying information to the reader. Hierarchical organization of information is central to reading

and writing; it is an ordering concept that is familiar yet powerful. In addition, documents structured

hierarchically can provide numerous visual bene�ts to users [20, 21], something that is very important in

a graphical hypertext environment.
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Figure 1: Document structure

2.3 Structural feature extraction

Conversion from text to hypertext is a viable alternative to manual hypertext composition [22]. In fact,

when working with a large document base it becomes the only realistic choice for initial hyperbase pop-

ulation. One of the goals in the conversion process is to maintain the literary paradigm inherent in the

source document. This implies the hypertext must have an architecture beyond simple nodes and arcs, and

relations in the source text must be properly mapped into hypertext links. In other words, the product

of the conversion process must be structured hypertext as in Section 2.2. To do this, several structural

features must be extracted from the original document and represented in the resultant hypertext. At a

minimum, the inherent links between spans which are linear (sequential) and non-linear (referential) must

be extracted [23].

It should be noted that while we are mainly concerned with the conversion of documents tagged with

descriptive information (for example, via LaTEX or SGML), the techniques discussed in this section will

also work for unadorned text. However, by making use of existing markup describing document structure

the resultant hypertext will better approximate the original text. Examples of markup for indicating

relations among spans include footnotes, reference sections, quotations, citations, glossaries, indices, and

tables of contents. The conversion process should capture these relations and represent them as live

hypertext links. Naturally, the user should be able to create links external to the document's original

structure (for example, for annotational purposes). Section 4 describes the use of such links.

There are three structural aspects of linear documentation which must be extracted to produce structured



hypertext. As illustrated in Figure 1, they are:

(1) Hierarchical sectioning: Documents have a natural hierarchy created by section levels. It is im-

portant to accurately reect this hierarchy in hypertext. Otherwise, the result of conversion is an

unstructured collection of spans rather than the desired structured hypertext. This structure may

be represented as a layered graph, where each layer represents a nesting level in the document. The

hierarchical structure is based upon a set of inclusion relations between sections and may be repre-

sented using structural links in the hypertext. Its interconnection model is Structural IM = (fsectiong,

fcontainsg) .

(2) Sequential ordering: The ordering between sections imposes a sequential structure which represents

reading threads. In hypertext terms, this structure may be thought of as implicit links between

sections which the user follows when browsing a document in a linear fashion. It is important to

capture these discourse clues so as to reect the original ordering among spans which the text's

author intended [24]. Section sequencing may be modeled as a partial order and represented as a

sequential link in the hypertext. Its interconnection model is Sequential IM = (fspang, fprecedesg) .

(3) Referential relations: References from one section of the document to another, such as \See Section

2.3 for more information," represent important information to readers. Other examples of such static

references are citations, footnotes, page and section references, and indices. In hypertext terms, such

references should be captured and translated into referential links. Note that such relations may be

made explicit in the document if it was written using descriptive markup (see Section 3 for examples

of such relations in LaTEX). Relations between spans may be modeled as explicit references and

represented as a referential link in the hypertext. The interconnection model for referential relations

is Referential IM = (fspang, frefers-tog) .

2.4 Personalized information structures

Structured hypertext is an improvement over regular hypertext; document hierarchy and hypertext links

provide two organizational axes for the abstraction of structure. However, this can be improved upon. A

third axis may be realized through multiple, virtual arrangements of the �rst two. These three axes form

the basis for personalized information structures: user-de�ned, multiple, virtual hyperdocuments over the

same hyperbase.

As stated in Section 1, the success of moving new technology into the workplace depends crucially on the

acceptance of the system by its users. If they �nd the system too di�erent from what they are currently

using they will be loathe to change. However, if they can tailor the new system to �t into their existing

environment and work the way they want it to|not the way the designer thought they might want it to

work|then the system has a much better chance of success. Hence, the goal is to provide the user with as

much exibility as possible in structuring the hypertext to suit their needs. Similar extensibility has proven

e�ective in other hypertext systems (for example, [25]), and in our own work on program understanding

[26].



One of the advantages of structured hypertext is the use of a hierarchy as a structuring mechanism. Such

a hierarchy can be used to address a single concept; a (at) semantic network has no such central theme.

However, the structure of the hierarchy is �xed by the author. Moreover, it can only address a single theme

at a time. Hence, the logical successor to such a single-viewed static mechanism is to allow multiple views

of the same information, and to allow multiple hierarchies.

With personalized information structures the user is able to create their own view of the large underlying

document, and to structure the pieces of information related to a task as a mini-document. In this way, the

user creates multiple views of the document, each view pertaining to a particular task. Since the document

structure created is virtual, each user is using the same underlying information base.

One of the advantages of personalizing hypertext has to do with information search and retrieval. Users

often fail to �nd pertinent information during online searches because they describe the items they are

searching for in terms di�erent than that stored in the system [27, 28], or because they become disoriented

while navigating [29]. By structuring the hypertext the way they wish, the representation and the mental

model of a concept can be much closer. Searches become content-based conceptual searches with a much

higher chance of success. It has been reported that long-time users of paper-based documentation can

�nd information faster and more e�ciently than in hypertext systems because of the ability of the paper

to be customized, such as by writing in the margin, underlining parts of the text, or leaving bookmarks

[30]. Personalized information structures o�er a superset of the same capabilities for hypertext-based

documentation.

For example, after searching through a document for speci�c information the �rst time, the navigation can

be recorded for later use. Such searches will create sets of navigation paths and hypertext structures for

each search. These paths and structures may be saved and recalled at a later date. The end result is a

malleable hypertext structure with many layers of conceptual webs built upon it. Each web corresponds to a

concept (or concepts) in the user's domain. Such webs may be shared among users and used simultaneously.

To summarize, text may be automatically converted to hypertext and represented using a semantic network.

Structuring this network in a hierarchical manner reduces disorientation and increases usability for large

hyperdocuments. The conversion process captures three of the most important structural features of the

literary paradigm, which may be represented using the formalism of interconnection models. However,

the resultant hypertext is still static and two-dimensional. Personalized information structures o�er an

improvement over structured hypertext by lifting the restrictions imposed by such an author-oriented

environment. While other systems do exist for accessing existing documentation in a static hypertext

form, they do not address authoring new information structures built upon the originals. Personalized

information structures bridge the two domains of authors and end-users. The next section describes how

the creation of personalized information structures from existing text is accomplished in our system.



rigiserver

Rigi

rigireverse

creverse

c++reverse

cobolreverse

plasreverse

rigiedit

Motif

Sunview

latexreverse

Open Look

Figure 2: The Rigi system's main components

3 Supporting personalized information structures

Personalized information structures as described in Section 2 are created from linearly organized online

documents using Rigi,2 a versatile system and framework under development at the University of Victoria.

The primary use of Rigi to-date has been for reverse engineering and redocumentation of software systems

[31]. In this process, the discovery and analysis of very large system structure is facilitated. However, the

underlying structuring mechanisms used by Rigi are well-suited as a backbone for hypertext. Indeed, the

philosophy underlying reverse engineering of software is equally applicable to documentation.

In addition to parsing source code of various programming languages, Rigi has been augmented to parse

documents (in particular, LaTEX �les) to produce an initial representation of personalized documents based

on the document's inherent structure. Relations among textual spans are used to build a semantic network,

where nodes correspond to spans, and arcs represent various semantic relationships. The network is used

as a basis upon which to build multiple virtual documents representing reading threads for speci�c tasks.

Rigi's graph editor o�ers several semi-automatic clustering mechanisms for imposing new structure on

graphs. These mechanisms are employed by users to create views. The abstraction mechanisms of Rigi

accommodate structures which may or may not be hierarchical, depending on the user's preference. Thus,

users may create personalized manuals that suit their own requirements and intuition.

The Rigi system consists of three main entities: the parser, the database, and the editor. Each of these are

modi�cations to three similar parts of our software reverse engineering tool: rigireverse, rigiserver, and

rigiedit respectively. Essentially, we have introduced a new application domain|that of understanding

document structure|to Rigi's original purpose of program understanding. This section provides a high-

level overview of the structure of these subsystems and how they communicate. The overall system structure

is depicted in Figure 2.

2Rigi is named after a mountain in central Switzerland.



3.1 The parser

The creation of a new personalized information structure begins with the transformation of an existing

linear document into a more hypertext-oriented form. Currently, we use a simple text parsing system

that extracts structure, other relations, and actual text from LaTEX source. We have chosen this text

markup language as the source type since LaTEX documents are in plentiful supply, and thus our system

has immediate broad application. Our intention is not to duplicate the LaTEX parser in its entirety, but

simply to extract typesetting features of relevance to structural and referential characteristics of documents.

As such, the parser extracts the following information from the source (as discussed in Section 2.3):

Hierarchical sectioning: In LaTEX, structure is speci�ed both in absolute and relative terms. Absolute

mechanisms include the use of keywords such as nchapter and nsection. An absolute textual scope

de�ned by a particular keyword remains in existence until over-ridden by another keyword of equal or

greater signi�cance. Relative structure is speci�ed using the \environment" constructs nbegin and

nend. The low-level objects are mostly paragraphs, but also include such constructs as �gures, tables,

and items in lists (for example, the nenumerate and nitemize relative environments). Paragraphs

are usually recognized without the explicit use of an absolute keyword. Instead, one or more blank

lines, and various LaTEX commands, delimit them.

Sequential ordering: A sequential link implicitly exists between adjacent portions of text in a linear

document. This rather obvious observation is of great importance to our system because it implies

an order amongst objects. For example, if Chapter 3 of a manual contains four sections, then it is

expected that they occur in the order in which they are parsed, and may be named Section 3.1, 3.2,

3.3, and 3.4. The parser would output sequential links between these sections, plus one from the node

representing Chapter 3 to the node representing Section 3.1.

Referential relations: In LaTEX, references include citations of bibliographical entries using ncite, la-

belling using nlabel, and explicit references (nref and npageref). Directed referential links are

established between each reference and the label (or bibliography entry) that is referenced.

User-de�ned relations: Hierarchical structure and explicit references are recognized through the use

of LaTEX keywords. We have augmented these mechanisms by providing a facility for specifying

additional keywords at feature extraction time. These keywords are not LaTEX commands; they are

usually technical words of special relevance to a particular domain. New referential relationships are

established using locations in the text where these keywords occur, providing an initial user-de�ned

web of hypertext links amongst textual objects.

Parsing the document populates the database. The output consists of nodes and arcs representing the

document's structure, and text extracted from the document itself, including paragraphs, headings such

as nchapterfIntroductiong, and other LaTEX commands. The nodes and arcs form a semantic network,

which is the dual of the resource-ow graph created by Rigi when reverse engineering software. The LaTEX

commands are retained with the rest of the text, because one of the uses of the system is the re-authoring of

linear documents. Moreover, typesetting can be performed from the editor itself, as described in Section 3.3.



3.2 The database

There are two main types of data that must be maintained by the system: graphical objects, and text. The

database subsystem takes care of both types. Facility is provided for supporting user-supplied annotations

and editing all forms of stored objects. In this way, multiple personalized structures over the same document

are maintained.

The originally parsed document remains unchanged. However, a new copy is created and stored in the

database, along with the structural view needed to re-create the original. Users' hypertextual views consist

of structured graphs with links back to this stored document's text, plus their own personal annotations.

These are stored in personal workspaces.

3.3 The editor

The editor provides the graphical user interface (GUI) through which authoring, editing, and browsing

of personalized information structures is performed. Hence, this subsystem is the heart of Rigi from the

user's perspective. The presentation of the editor is more hypertext-oriented than would be required for

program understanding alone, although the functionality is largely the same. Individual and grouped

objects, including nodes, arcs, and spans may be selected, moved, �ltered, opened, edited, destroyed,

created, and renamed.

Within the editor, hypertext objects may be represented in various ways, but the most important form

is an iconic one. Icons represent textual scopes output by the parser. The editor provides di�erent icons

for documents, parts, chapters, sections, and so on. They are initially attributed with names derived from

headings in the text, plus the appropriate number (for example, Chapter 2 : Background). Names are

editable, but numbers are automatically maintained properly.

Of key relevance to structural editing are the expand and collapse operations. Expansion of an icon results

in that icon being replaced with the objects it contains. These revealed icons can be moved about and

grouped into new clusters. Such a group may then be collapsed, resulting in a new icon that can be

renamed, annotated, and moved to a new location. In this way, structure and textual scoping levels of

information structures are malleable. The editor keeps track of the appropriate section numbering for new

icons as well as for existing icons whose textual scopes have changed. For example, if a new collapsed icon

is moved between one named Section 3.1 and one named Section 3.2, the latter is renamed Section 3.3 and

the new one becomes Section 3.2.

Graphical objects and text are displayed in windows. There are four main window types used in the editor:

(1) Standard: These windows correspond to one node representing one particular structural scope; they

contain the node's immediate subscopes. Icons appearing within a standard window need not belong

to the same absolute scope. For example, a standard window for Chapter 3 might contain an icon

representing an introductory paragraph, then icons for Sections 3.1, 3.2, and 3.3. Most structural

editing operations are restricted to standard windows.



(2) Overview: This type of window o�ers improved visibility of overall document structure. Structural

\contains" relationships are visible as arcs. Sequential relationships are depicted, as they are in

standard windows, by enforced top-to-bottom ordering or left-to-right ordering.

(3) Projection: Projection windows are more exible than overview windows: the number of levels visible

at one time can be restricted, and the graph structure that is visible to the user is tailorable by

choosing the type of relation (structural, sequential, and so on) that is depicted. For example, a

projection window could show the �rst four nodes, in sequential order, of a given chapter. Another

could show all nodes belonging to that chapter, down to the subsection level. Still another could

follow referential links from a given paragraph.

(4) Text projection: These are similar to projection windows, except that text is displayed instead of

icons. Projected text can be viewed in either editable form (with embedded LaTEX commands),

or actually typeset as it would appear on paper. Highlighted text in the text projection window

corresponds to selected nodes in the others.

In standard windows, of the four interconnection types described in Section 3.1, only referential links

are normally visible as arcs linking icons. Structural links are implicit in the action of \opening" an

icon, resulting in a new standard window with new icons representing textual subscopes of their parent.

Sequential relationships are implicit in the left-to-right or top-to-bottom order in which icons are displayed

in a window.

The editor provides the capability for automatically synthesizing referential links up through the tree

representing a hierarchically structured view. For example, if Section 3.2 references Section 4.1.3, then a

synthesized referential arc links Chapters 3 and 4. This arc is visible in any window that contains both

these nodes. Synthesized arcs may be �ltered if desired.

Relations based on user-supplied keywords can be created through the editor, complimenting those created

at feature extraction time through the parser. These relations are di�erent than the others in that they

are not directed, they are multi-way, and they are \named". Thus, a special kind of widget is employed,

in which the keyword itself is displayed, plus a scrollable list of all textual scopes containing that keyword.

The scopes are identi�ed by a numbering scheme extracted by the parser, and may be set at any level. They

are highlighted (whether appearing in textual or symbolic form), wherever they occur, when selected from

the widget. All user-supplied keywords are available in a sorted directory, through which the individual

widgets are accessible.

Rigi's graph editor o�ers several semi-automatic clustering (aggregation) mechanisms for imposing addi-

tional structure on graphs. These mechanisms are employed by users to create new views and thereby new

personalized information structures. Thus, the conversion of structured hypertext to personalized informa-

tion structures is semi-automatic, in contrast to the automatic conversion of text to structured hypertext.

The abstraction mechanisms of Rigi accommodate graph structures which may or may not be hierarchical,

depending on the user's preference. The use of some of the more important of these operations is discussed

in the next section.



4 Using personalized information structures

This section describes the use of personalized information structures, implemented as described in Section 3.

Once the source document has been parsed and the database populated with textual artifacts, the user

immediately has access to a structured hypertext version of the original text. This version is stored in their

personal workspace, although it can also be stored in a shared workspace if desired (for example, when

using a hyperbase which was created by someone else). Any changes which are made to the document,

content-wise or structure-wise, are stored in the same workspace; the original document itself is not altered.

The user is then free to create their own personalized version of the structured hypertext document. They

may do so using the tools and methods provided by the editor, as described in Section 3.3. For example,

they can annotate spans using the node annotator, permanently delete spans which are of no interest to

them, restructure the document to their taste by reordering sections or even moving paragraphs from one

section to another, create and save di�erent (perhaps even contrasting) views of the document by using

the �ltering operations on nodes and arcs, and by projecting nodes and/or text to selected depths.

As an example, consider the need to provide customers with customized copies of technical documents. In

our case, we have a user's manual for Rigi which contains three distinct subsections concerning the three

di�erent GUI's that we support (as depicted in Figure 2). Most users are only concerned with a single

version of the editor, say the Motif3 version, hence the other two parts of the section are unimportant.

By �ltering these sections out, the user will have a manual tailored for their own use. Naturally, they

can make use of the view and annotation facilities provided by the editor to make notes on the use of the

system as described in the manual. They may also use the powerful collapse and expand operations, along

with node and link creation, to create truly personalized versions of the user's manual.

To illustrate these concepts, the LaTEX source text to this paper is used as the base document. Two

di�erent dependency structures of Section 2 of this paper are shown in Figure 3.4 The left hand side of the

�gure shows the sequential links between sections and subsections; this is the linear ordering of the spans

in the paper. The right hand side shows the structural links between sections and subsections; this is the

nesting of spans in the paper.

Figure 4 shows the same section of the paper as it is actually displayed for the user. The top window shows

the same structural information for Section 2 as depicted in the right hand side of Figure 3, while the two

windows below it show both the sequential and referential relations of subsections 2.1 and 2.3 respectively.

The left window shows the contents of Section 2 projected to text level. However, for this example the

projection is limited to two levels.

The parameterization of the projection operations is very powerful. For projection to text, it implies the

visualization of the textual portions of the document can be restricted to higher-level sections (like an

outliner), or it can show all the text if desired. Note that multiple nodes can be selected for projection at

3(OSF/Motif) is a trademark of the Open Software Foundation.
4To limit the size of the �gure, not all of the structural dependencies of Section 2 are shown. The dashed line between

Subsection 2.2 and Section 3 indicates the presence of intervening subsections.
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the same time. For example, the user could choose to view the text of just Chapter 1, Section 3.1, and

Section 3.2. The text displayed appears in order of their sequential arcs. In addition, the node annotations

may also appear in this window; if present, they are displayed in a di�erent color. Each of the paragraphs

and node annotations may be enlarged or reduced in the project-to-text window (for example, if the user

is not interested in a particular paragraph at a certain level).

The user also has the option of viewing a formatted version of the raw LaTEX source if desired. The system

will use the style �les present in the original document (if available), \wrap" the span in other header and

footer material required for the LaTEX parser and run the normal formatting command on the temporary

document. The resultant PostScript �le can then be previewed using tools such as ghostview. Sets of

windows and annotations may be saved as views [31] and recalled for later use.

5 Summary

Hypertext has been described as a tool to enhance human cognitive abilities. One of the original goals of

hypertext was to allow readers to impose their own structure on the information. In normal hypertext this

is accomplished through the selection of appropriate nodes [32].

We have approached these goals of hypertext by exploiting our previous work on program understanding.

There exist parallels between the representation, maintenance, and presentation of source code, and that

of documentation. Our approach to reverse engineering of software systems is exible enough to be used

in a new domain: reverse engineering of documentation. The original text document is automatically

converted into structured hypertext through a process which captures essential structural features of the



Figure 4: Personalized information structures in use

original document. These features model the literary paradigm of section nesting and span relations and

are identi�ed based on keyword sets and the document's physical structure. The graph editor is then

used to semi-automatically construct personalized information structures based on the single structured

hyperdocument. Interconnection models provide a formalism which allow the users to pose structural

queries on their virtual documents.

We have presented a natural evolution of document structure, from linear text to hypertext to structured

hypertext to personalized information structures. The latter allows the user to select their own level of

detail for di�erent parts of the document. The structure becomes dynamic, user-de�nable, and is not as

restrictive as a single hierarchy. Personalized information structures allow the user to be in control of how

a document is structured, presented, and used|not just the author.
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