
Documenting Software Systems with Viewsyz

Scott R. Tilley Hausi A. M�uller Mehmet A. Orgun

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: fstilley, hausi, morgung@csr.uvic.ca

Abstract

Software professionals rely on internal documentation as
an aid in understanding programs. Unfortunately, the
documentation for most programs is usually out-of-date
and cannot be trusted. Without it, the only reliable and
objective information is the source code itself. Personnel
must spend an inordinate amount of time exploring the
system by looking at low-level source code to gain an un-
derstanding of its functionality. One way of producing
accurate documentation for an existing software system
is through reverse engineering. This paper outlines a
reverse engineering methodology for building subsystem
structures out of software building blocks, and describes
how documenting a software system with views created
by this process can produce numerous bene�ts. It ad-
dresses primarily the needs of the software engineer and
technical manager as document users.

Key words: Software documentation, reverse engi-
neering, software maintenance.

1 Introduction

As today's software ages, the task of maintaining it be-
comes both more complex and more expensive. A con-

yThis work was supported in part by the IRIS Federal Cen-

tre of Excellence, the Natural Sciences and Engineering Research

Council of Canada, the British Columbia Advanced Systems In-

stitute, Science Council of British Columbia, the University of

Victoria, and IBM Canada Ltd.
zThe positions expressed herein are solely the views of the

authors and are not a re
ection of IBM Canada Ltd.'s position.

Copyright c
 1992 Association for Computing Machinery,
Inc. Reprinted, with permission, from SIGDOC '92: Pro-

ceedings of the 10th International Conference on Systems

Documentation, (Ottawa, Ontario; October 13-16, 1992),
pp. 211{219. ACM Order Number 613920.

tributing factor to this cost increase is the generally poor
condition of the software. This can be partly attributed
to the lack of accurate documentation, the unstructured
programming methods used in the system's design, the
fact that the original system designers and programmers
are no longer available, and the complication that the
software has been changed several times since its �rst
release, and thus has evolved into something di�erent
from the original [1, 2, 3, 4].

Of these de�ciencies, the lack of detailed, accurate, and
up-to-date program documentation is critical for soft-
ware engineers and technical managers responsible for
the maintenance of existing software systems. With-
out it, the only reliable and objective information is
the source code itself [5]. Maintenance personnel must
spend an inordinate amount of time attempting to cre-
ate an abstract representation of the system's high-level
functionality by exploring its low-level source code. With
software maintenance routinely consuming upwards of
50% of a product's lifecycle and budget [6], any improve-
ment in documenting a program's evolution and overall
architecture would ease the tasks of the maintenance
team. One way of producing accurate documentation
for an existing software system is through reverse engi-

neering.

Reverse engineering is the process of extracting sys-
tem abstractions and design information out of exist-
ing software systems for maintenance, re-engineering,
and reuse. This process involves identifying software
artifacts in a particular representation of a subject sys-
tem via mental pattern recognition by the reverse engi-
neer, and the aggregation of these artifacts to formmore
abstract system representations. A reverse engineering
methodology is outlined in [7] for building subsystem
structures out of software building blocks. This method-
ology is supported by Rigi,1 a system and framework for
analyzing large software systems [8].

1Rigi is named after a mountain in central Switzerland.

We have concentrated on investigating algorithms, tech-
niques, and tools for the composition, analysis, and pre-
sentation of subsystem structures. In particular, we
have focused on methods and algorithms for summariz-
ing software structures by building hierarchies of subsys-
tems [9]. The generated structures embody visual and
spatial information that serve as organizational axes for
the exploration and presentation of the composed sub-
system structures. These structures can be augmented
with views: hypertext (and potentially multimedia) an-
notations that highlight di�erent aspects of the soft-
ware system under investigation. Our semi-automatic
reverse engineering methodology can serve as a precur-
sor for maintenance and re-engineering applications, as
a front-end for conceptual modeling and design recovery
tools, as a documentation and program-understanding
aid for large software systems, and as input to project
decision-making processes.

This paper shows how documenting a software system
with views created through reverse engineering can be
used to provide numerous bene�ts. The next section de-
scribes some of the de�ciencies of traditional methods of
software documentation. Section 3 explains why visual
and spatial information play a crucial role in program
understanding, and how Rigi uses views for software
documentation. Section 4 highlights some of the bene-
�ts that reverse engineering and documenting a software
system with views can bring. Section 5 reports on some
of our early experience of applying and using Rigi on
real-world software systems.

2 De�ciencies in traditional

documentation techniques

The documentation for a typical project must serve a di-
verse group of readers. Two very distinct audiences are
authors and end-users. The former includes both soft-
ware engineers and technical managers: they require an
internal view of the system to understand how it actu-
ally works. The latter requires an external view, which
may include a description of the program's functional-
ity and a tutorial on how to use it. While the exter-
nal view of a program may change very little over its
lifetime|even if its functionality is enhanced|the pro-
gram's internal architecture might change dramatically.
In an ideal situation, the internal documentation would
be continually updated to re
ect frequent changes in
the source code. In practice, documentation and source
code are not always synchronized. This section concen-
trates on documentation de�ciencies as they relate to
the �rst group: authors.

High-quality documentation is widely recognized as an
important part of any software system [10]. It has a
signi�cant e�ect on program understanding. Software
engineers and technical managers base many of their
project-related decisions on their understanding of the
architecture of the software systems they are responsi-
ble for. While they rely on original design documents,
maintenance histories, and experienced project mem-
bers (if they are available) to help them understand
how a program works, internal documentation is of-
ten their primary source of information. Hence, the
most obvious way to support program comprehension is
to produce and maintain adequate documentation [11].
Regrettably, documentation for most older programs is
sadly out-of-date.

One reason for the general lack of quality documenta-
tion may be that preparing software documentation is
usually one of the last activities to take place during
program development. Software documentation seems
to be of little interest to the development community;
it is the \poor stepchild" of most software development
e�orts [12]. If is often considered something to be put
o� until the last possible moment; in many cases, it
is postponed inde�nitely. While there do exist model
programmers who carefully document design and im-
plementation decisions while developing a piece of code,
usually documentation is tacked on as an after-thought.
Other pressures of day-to-day development seem to take
precedence over documentation. These may include the
following:

� Getting versions of the software to the testing de-
partment or customer beta-test sites.

� Managers feeling that the project's schedule is slip-
ping and hence all \extras" must be eliminated to
meet the deadline.

� Programmers moving on to new projects.

Another contributing factor to the inadequacy of most
software documentation is the age and maintenance his-
tory of the software. Managing complexity and support-
ing evolution are two fundamental problems with large-
scale software systems [13]. Keeping the documentation
in synchronization with the program's evolution is given
a lower priority than getting the code �xed or enhanced,
and is often left \until later" | which may mean never
at all. The philosophy of \get it working quickly," with-
out keeping the documentation up-to-date, is doomed to
failure. As changes to the program continue, the orig-
inal documentation quickly becomes useless. A direct
consequence is the increased time required by software
engineers to understand the system. The short-term
gain of getting the program �xed and shipped as soon

as possible will be overwhelmed by the long-term in-
crease in costs.

It is a common misconception that maintenance is eas-
ier than new development. Consequently, new program-
mers are often placed in maintenance situations when
they start a new job. Since they have not been involved
in the product's development prior to maintaining it,
they become heavily reliant on support documentation.

Software documentation has many di�erent audiences.
Di�erent levels of documentation are required for the ca-
sual user of a program, for the developer familiar with
the code, for the maintainer unfamiliar with the sys-
tem, for testers and technical writers trying to under-
stand its functionality, and project management per-
sonnel looking for \the big picture": an external view
of the system's architecture and history [14, 15, 16]. A
person browsing a �le attempting to get an overview of
its functionality may be satis�ed with short, descriptive
comments concerning algorithms, data structures, and
design decisions that a�ected the �le. A fellow devel-
oper may require detailed information about a particu-
lar function.

With traditional source-code documentation, it is very
di�cult to provide di�erent levels of information to such
a diverse community. Although each person may have
di�erent objectives, everyone will see the same thing: in-
line and block commentary with the source code, and
original design documents and maintenance logs.2 It
would be far better to be able to provide each user with
a view of the program that suited their needs. Rigi
accomplishes this goal with views.

3 Using views for program

documentation

The Rigi system uses views to direct the user's focus on
visual data and to guide the exploration of spatial data
to support program documentation and understanding.
Such a view represents a particular state and display
of a software model. In the realm of software struc-
ture modeling and analysis, spatial and visual repre-
sentations of artifacts seem to be the key to forming
mental models of software structures [17]. The spatial
component constitutes information about the relative
positions of the meaningful parts of a software struc-
ture, whereas the visual component supplies informa-
tion about how a software structure looks. The reverse
engineer exploits both spatial and visual information
when identifying components and building abstractions.

2Assuming these documents exist at all.

The Rigi editor is an interactive graph editor that al-
lows the reverse engineer to maintain software struc-
tures stored in a graph database [18]. It supports a
variety of operations to manipulate visual and spatial
representations of graph structures. Among Rigi's most
important visual representations are overviews and pro-

jections. System overviews can be depicted in various
patterns and arrangements using graph editor opera-
tions such as grouping, scaling, layout, and �ltering.
Projections are overviews at di�erent levels of detail.

Di�erent views of the same software model can be used
to address a variety of target audiences and applications.
Views can be collected into sequences to form related
sets of documentation, to represent guided tours for tu-
torial purposes, to highlight system components that
need to be analyzed and understood when performing
speci�c maintenance or re-engineering tasks, to sum-
marize change, impact, or performance analyses, or to
annotate critical sections with measurements that serve
as input to decision-making (for example, project prior-
ities or personnel assignments).

Figure 1 shows an overview of tbl: a document format-
ting preprocessor for tro� which enables tables to be
typeset in the UNIX3 system [19]. The tbl program is
written in C and consists of 22 modules. Such a view
might be used by management personnel to gain an un-
derstanding of the overall architecture and subsystem
interaction, or by new employees just learning the sys-
tem. Without such views, these users would be forced
to read through many thousands of lines of source code
to even begin to understand the system's functionality
and architecture. Several views of the same system, at
di�erent levels of detail targeted to diverse users, are
described in Section 4.

4 Bene�ts

Reverse engineering a software system, and subsequently
documenting it using views, can provide numerous ben-
e�ts. The views can be used to aid management de-
cisions, recover lost information, and improve system
comprehension. Each of these bene�ts are discussed be-
low.

4.1 Aiding management decisions

One of the biggest advantages of reverse engineering
a software system with Rigi can be realized by man-
agement personnel. Project management and planning

3UNIX is a trademark of AT&T Bell Labs.

Figure 1: A high-level view of the tbl program's architecture

at most corporations is a complicated process. The
software systems they are responsible for exist in var-
ious life-cycle stages: new product development, test-
ing, maintenance of existing code, and di�erent ver-
sions. Management personnel must also manage the
human element of the project: identify the strengths
of team members, allocate resources based on various
needs (both personal and �nancial), incorporate new
personnel into the project, and compensate for the de-
parture of experienced sta�. Other considerations in-
clude funding, experience and talents of the people avail-
able, schedules, e�ect on other products and develop-
ment groups, and market analysis. All of these things
make the task of management very di�cult. This prob-
lem is exacerbated when the complexity of the project,
both technical and organizational, threatens to over-
whelm even the most prepared managerial personnel.

Because of this complexity, many managers rely on in-
put from other sources to help make their decisions.
Since they may lack in-depth technical knowledge of
the products they are managing, they must rely on data
provided by members of their team, \gut" feelings, and

experience. For these reasons, software analysis tools
such as Rigi can aid the project manager in making im-
portant management decisions that will a�ect the out-
come of the project. Views can aid in making decisions
such as where to allocate precious funds, where to place
key personnel, and where to concentrate e�ort for max-
imum pay-back by exposing system structure and mod-
ule dependencies. The graphical representation of the
system makes central and fringe components immedi-
ately obvious. One can then tailor activities such as
testing, monetary and personnel allocation, and subse-
quent development e�orts on the components desired.
Dead code is quickly identi�ed and can be eliminated
from the system, thereby reducing overall complexity
and maintenance.

The view shown in Figure 1 can be used by managers as
a guide to the high-level architecture of the tbl program.
The view in Figure 2|which depicts the same program
but at a di�erent level of detail|might be used to as-
sign work to personnel in areas of the system best suited
to their knowledge and experience, based on the visual
information provided by the spatial relationships of cen-

tral and fringe components. The highlighted nodes are
central components, hence modifying them should be
done with care, preferably by experienced personnel.

4.2 Recovering lost information

Reverse engineering can produce consistent and accu-
rate documentation. As large systems evolve over their
product life-cycle, information concerning the original
design is lost. Even if the system was designed using
modern software engineering principles of modulariza-
tion and informationhiding, the original design becomes
compromised during maintenance. \Bug" �xes and en-
hancements that seem small at the time soon resemble
patches instead of a smooth extension of the original
code. A side-e�ect of these changes is that documenta-
tion is usually not kept up-to-date.

Even worse is documentation that no longer re
ects
reality; the code has changed but the documentation
has not. One often relies heavily on programmers who
know the system intimately, or one invests substantial
amounts of time for maintainers to explore and learn
the system. Given time, most programmers will at-
tempt to keep in-line documentation and source code
synchronized, but project work books and higher level
design documents are rarely updated to re
ect main-
tenance. If they are, the updates resemble appendices
to the original, and the documentation quickly becomes
di�cult to follow. The reverse engineering facilities pro-
vided by Rigi allows one to produce an accurate \op-
erational" design document describing the architecture
of the software system's current state|not that of the
original system before numerous maintenance changes
were made.

Many end-user documents are becoming available on-
line, either as a replacement of, or in addition to, tradi-
tional hardcopy manuals. For existing systems, work is
also going on to move the \traditional" documentation
from hardcopy to online and hypertext mediums (for ex-
ample, [20]). The methodology presented here provides
a two-fold bene�t that is analogous to the moderniza-
tion of end-user documentation. Firstly, the reverse en-
gineering process produces accurate and up-to-date doc-
umentation; it does not directly rely on existing source-
code annotations. Secondly, the views created are not
just textual; they can serve as hypertext documenta-
tion that augments traditional source-code commentary.
However, there is no reason to limit the view concept
to textual and two-dimensional graphical images. The
online documentation produced by the reverse engineer
can (in theory) be true multimedia, including graphics,
images, voice, and even video [21], in which the original

software engineer explains the program.4

New software development projects may use and pro-
duce a variety of technical documents, such as design
speci�cations, performance goals, functional speci�ca-
tions, design decisions, and maintenance logs. These
may be found in-line with the source code, as tradi-
tional hardcopy documents, or (in the most modern
systems) online in various hypertext and multimedia
formats. Unfortunately, older software systems rarely
provide such a wide range of documentation. Typically
all that is available is a single document that is used to
represent the entire system.

However, during reverse engineering, a variety of docu-
ments and graphical representations of the system can
be generated by Rigi. These views of the system can be
saved and replayed at a later date, serving as tutorials
for other team members, as operational design docu-
ments, or as system overviews for management person-
nel and external documentation. For example, a more
detailed view describing the three high-level susbsytems
of the tbl program is shown in Figure 3. This view might
be used by the maintainer responsible for this part of
the system; it provides a description (both graphical
and textual) of the subsystem's structure. Hence, the
programming team can rely less on chief (or original)
programmers|whomay not be available|and more on
automated tools to provide them with the knowledge
they need to better understand the system.

Reverse engineering the system can recover some of the
original design decisions. The salvaging of \corporate
knowledge" from earlier projects can greatly improve
the quality of new projects, as well as reduce cycle time
from design to delivery. Full design recovery is the next
step after reverse engineering, and semi-automatic tools
such as Rigi are a step in this direction.

4.3 Improving system comprehension

When faced with the task of maintaining a software sys-
tem, system comprehension is typically the most impor-
tant prerequisite. Educating new members of the devel-
opment team is a never-ending and important aspect of
most software development companies. These education
sessions are often held informally, by having new em-
ployees sit down with experienced developers who then
explain the code to them. Rigi o�ers a semi-automated
alternative to this education problem.

For example, visible in the bottom-right corner of Fig-
ure 2 is the Load View window. This window contains

4Multimedia program documentation is an area of research we

are planning on pursuing in the future.

Figure 2: Allocating personnel based on component location

a scrollable list of views that may be investigated at the
user's convenience. Taken together, these views form
an introductory tutorial describing all of the tbl pro-
gram's architecture and call structure. Such a tutorial
might be used by new personnel as an aid in program
understanding.

Graphical representations have long been accepted as
comprehension aids. The Rigi system allows the soft-
ware system to be viewed in a variety of ways. This
graphical representation of information can greatly in-
crease one's understanding of the software system. The
new employees can work with the code and explore the
entire system on their own, using the spatial and visual
information, views, and linked documentation [22] to
guide them in understanding the software system. As
they gain knowledge about the system from examina-
tion of the source code and the tutorial views, they can
record this information by creating new views, either for
themselves or for the whole maintenance team. Rigi al-
lows views to be either local or global, which enables the
user to save views of the software system that they �nd
useful for their particular task, yet still be able to look

at di�erent views of the same software system created
by other members of the team.

Rigi also provides textual information (for example, soft-
ware quality measures [23]) that augment the graphical
displays. The same mechanism can be used to present
an overview (or a detailed discussion) of some or all
of the software system to other management personnel,
other departments, or other development teams. In this
way, a high-level understanding of the system is dissem-
inated throughout the organization.

Each user will have his/her own requirements for sys-
tem comprehension. Managerial personnel might use
the high-level view shown in Figure 1. Software engi-
neers unfamiliar with the system might use the tuto-
rial views as shown in Figure 3. Experienced personnel
which require detailed knowledge of subsystem architec-
ture might also use some of the views available in the
tutorial, or a lower-level view describing the hierarchi-
cal structure of any subsystem. Figure 4 depicts just
such a view: the arc hierarchy of the process table

subsystem.

Figure 3: A detailed view of the three main subsystems

It is not just time that is spent (re)learning the system.
The monetary cost of understanding software is signi�-
cant, and it is multiplied every time a new person must
learn the system anew. The views generated by reverse
engineering can greatly reduce the overall cost of soft-
ware by lessening the time required to understand the
system. When a programmer is assigned a particular
maintenance task, often he/she has little knowledge of
the overall system design. A system such as Rigi can
provide (sub)system overviews at various levels of de-
tail.

5 Conclusions

Rigi is a versatile framework for analyzing large soft-
ware systems. Many of its capabilities can be used to
document existing software systems for program under-
standing and maintenance purposes, and by manage-
ment personnel to support some of the complex deci-
sions they face in project management. These include
resource allocation, personnel placement, system com-

prehension, investigations into reuse potential, and in-
formation recovery.

We have successfully applied our reverse engineering
methodology to several real-world software systems. In
1990, we analyzed the Practice Manager: a 57,000 line
COBOL program by Osler Management Inc. of Victoria
[24]. It is a comprehensive software system for the man-
agement of physician's practices in British Columbia.
The main purpose of the analysis was to build up-to-
date subsystem structures to assess the quality of the
entire system with respect to maintenance and to iden-
tify subsystems that are candidates for re-engineering.

In 1991, we analyzed an 82,000 line C program for the
isotope separator experiment at TRIUMF in Vancou-
ver. The main objective of the analysis was to iden-
tify components for re-engineering. In late 1992 we are
planning to analyze a large commercial database man-
agement system in conjunction with IBM Canada Ltd.

Figure 4: The arc hierarchy for the process table subsystem

References

[1] Girish Parikh and Nicholas Zvegintzov, editors. Tuto-

rial on Software Maintenance. IEEE Computer Society
Press, 1983.

[2] Peter Freeman, editor. Tutorial: Software Reusability.

IEEE Computer Society Press, 1987.

[3] Will Tracz, editor. Tutorial: Software Reuse: Emerging

Technnology. IEEE Computer Society Press, 1988.

[4] David H. Longstreet, editor. Tutorial: Software Main-

tenance and Computers. IEEE Computer Society Press,

1990.

[5] Nigel T. Fletton and Malcolm Munro. Redocument-
ing software systems using hypertext technology. In

CSM'88: Proceedings of the 1988 Conference on Soft-

ware Maintenance, (Phoenix, Arizona; October 24-27,
1988), pages 54{59. IEEE Computer Society Press (Or-

der Number 879), October 1988.

[6] Nicholas Zvegintzov. Nanotrends. Datamation, pages
106{116, August 1983.

[7] H.A. M�uller, B.D. Corrie, and S.R. Tilley. Spatial and

visual representations of software structures: A model
for reverse engineering. Technical Report TR-74.086,

IBM Canada Ltd., April 1992.

[8] Hausi A. M�uller. Rigi { A Model for Software System

Construction, Integration, and Evolution based on Mod-

ule Interface Speci�cations. PhD thesis, Rice University,
August 1986.

[9] H.A. M�uller and J.S. Uhl. Composing subsystem struc-

tures using (k,2)-partite graphs. In Proceedings of

the Conference on Software Maintenance 1990, (San

Diego, California; November 26-29, 1990), pages 12{19,

November 1990. IEEE Computer Society Press (Order
Number 2091).

[10] Jane E. Hu�man and Cli�ord G. Burgess. Partially

automated in-line documentation (PAID): Design and
implementation of a software maintenance tool. In

CSM'88: Proceedings of the 1988 Conference on Soft-

ware Maintenance, (Phoenix, Arizona; October 24-27,
1988), pages 60{65. IEEE Computer Society Press (Or-

der Number 879), October 1988.

[11] Johannes Sametinger. A tool for the maintenance of

C++ programs. In CSM'90: Proceedings of the 1990

Conference on Software Maintenance, (San Diego, Cal-

ifornia; November 26-29, 1990), pages 54{59. IEEE

Computer Society Press (Order Number 2091), Novem-

ber 1990.

[12] L.D. Landis, P.M. Hyland, A.L. Gilbert, and A.J. Fine.
Documentation in a software maintenance environment.

In CSM'88: Proceedings of the 1988 Conference on
Software Maintenance, (Phoenix, Arizona; October 24-

27, 1988), pages 66{73. IEEE Computer Society Press

(Order Number 879), October 1988.

[13] Frederick P. Brooks Jr. No silver bullet: Essence and

accidents of software engineering. IEEE Computer,
20(4):10{19, April 1987.

[14] Frederick P. Brooks Jr. The Mythical Man-Month.
Addison-Wesley, 1982.

[15] P. J. Brown. Interactive documentation. Software |
Practice and Experience, 16(3), March 1986.

[16] Duane Ressler and Dee Stribling. Designing and proto-
typing a portable hypertext application. In SIGDOC'90

Conference Proceedings, pages 88{94, October 1990.

[17] S.M. Kosslyn. Image and Mind. Harvard University

Press, 1980.

[18] H.A. M�uller and K. Klashinsky. Rigi | A system for

programming-in-the-large. In ICSE '10: Proceedings
of the 10th International Conference on Software En-

gineering, (Ra�es City, Singapore; April 11-15, 1988),

pages 80{86, April 1988. IEEE Computer Society Press
(Order Number 849).

[19] M.E. Lesk. Tbl | A program to format tables. Tech-
nical report, AT&T Bell Laboratories, October 1986.

[20] Vicki Coleman. Hardcopy to hypertext: Putting a tech-
nical manual online. In Proceedings of SIGDOC'91,

(Chicago, IL, Oct. 10-12), pages 67{72, October 1991.

[21] Frank A. Cioch. An audiovisual document for software

maintenance. In Proceedings of the IEEE 1988 Confer-
ence on Software Maintenance, pages 390{394, October

1988.

[22] Scott R. Tilley and Hausi A. M�uller. INFO: A simple

document annotation facility. In Proceedings of SIG-

DOC '91: The 9th Annual International Conference on
Systems Documentation, (Chicago, Illinois; October 10-

12, 1991), pages 30{36, October 1991.

[23] H.A. M�uller. Verifying software quality criteria using an

interactive graph editor. In Proceedings of the Eighth

Annual Paci�c Northwest Software Quality Conference,

(Portland, Oregon; October 29-31, 1990), pages 228{

241, October 1990. ACM Order Number 613920.

[24] H.A. M�uller, J.R. M�ohr, and J.G. McDaniel. Apply-

ing software re-engineering techniques to health infor-

mation systems. In Proceedings of the IMIA Working
Conference on Software Engineering in Medical Infor-

matics (SEMI), (Amsterdam; October 8-10, 1990), Oc-

tober 1990.

