
�

�

�

�

�

�

1 Introduction

Abstract

1.1 Evolution

1.2 Program understanding

On Inserting Program Understanding Technology
into the Software Change Process

Kenny Wong
Department of Computer Science

University of Victoria
Victoria, BC, Canada

Program understanding technologies can be applied ef-
fectively in the analysis phase of a software change process.
The analysis phase naturally follows a goal-driven metapro-
cess. Described are issues involved with inserting program
understanding technology into existing practice and into
such a metaprocess. The implied processes of program un-
derstanding and reverse engineering tools play an important
role. These issues pose major problems for the acceptance
of redocumentation tools such as Rigi, an evolvable reverse
engineering tool. An example using Rigi and its analysis
methodology for change-impact analysis is considered.

Keywords: program understanding, reverse engineer-
ing, software process, metaprocess, technology insertion.

The importance of software evolution has increased now
that the focus of the software industry has shifted from
completely new software development to long-term mainte-
nance. The expense in existing software is considerable, and
it is not always possible to scrap it and start over. The effec-
tive maintenance of this code is critical for keeping up with
changing needs. As a result, the software change process and
the role of analysis within that process have become increas-
ingly crucial for evolving quality software.

The fundamental business goals that drive the evolution
of a software product [1] are the needs to:

maximize customer satisfaction,

minimize effort and cost, and

minimize defects.

Software analysis and program understanding play a large
role in achieving these goals throughout the lifetime of the

product. The software is ultimately tied to the objectives of
the business.

Software changes to address these three goals can be cat-
egorized into three loosely-corresponding types:

adaptive changes,

perfective changes, and

corrective changes.

Adaptive changes address customer needs and accommo-
date technological improvements. Perfective changes seek
to make future evolution somehow better, more manage-
able, and less costly. Corrective changes focus on detecting,
tracking, and diagnosing defects and their root causes. The
effective management and execution of these changes is crit-
ical.

The type of change greatly influences the selection of
appropriate program understanding strategies. For exam-
ple, the tracking and categorization of defects are an im-
portant part of the change process. Finding defects in the
source code involves diverse program understanding tech-
nologies such as defect filtering [2], structural redocumen-
tation [3], pattern matching at various levels of abstraction,
and run-time analysis. Effective understanding is also nec-
essary for factoring and optimizing code, porting to different
platforms, exploiting reusable components, and adding new
features. Applications such as medical instrumentation and
process control require a level of quality that is only possible
with a thorough understanding of the software.

Because of changes during evolution, the software archi-
tecture often degrades in that the code no longer follows the
original design criteria. This is especially true for legacy
software systems, which are typically large, complex, poorly
structured, and resist change. Some software systems are
badly written from the start because of the enormous pres-
sure on developers to ship the product out the door, even
if the bugs and unsound structure later cause maintenance

�

�

�

�

�

�

�

2 Analysis

1.3 Software change process

1.4 Reverse engineering

2.1 Goal-directed metaprocess

nightmares. Somebody still has to understand these high en-
tropy systems. Thus, program understanding is an important
part of software preservation.

Changes generally arise by reviewing customer needs for
new features and considering requests for fixes. The ratio-
nale for these changes ultimately points back to the funda-
mental business goals. Each change leads to a change pro-
cess where it is typically planned (scheduled), studied, de-
veloped, inspected, and tested. Program understanding can
play an effective role in analyzing changes. Certain analysis
results can then be used as input into followup code modifi-
cation, inspection, and metrics gathering activities.

The analysis must consider and answer several direct
questions:

what is the change,

why is the change needed,

whether to proceed with the change,

where to place the change,

how to carry out the change,

when to perform the change, and

who should perform the change.

An answer to the whether question entails the costs, ben-
efits, impact, and feasibility of the change. This provides
a deeper analysis of the change beyond the initial review
(what, why) and may result in further decomposing the
change into smaller pieces or even postponing it. We might
have tools to answer the where question, programmers to an-
swer the how question, and managers to decide the when,
who, and whether questions. Consequently, the analysis it-
self involves multiple agents and/or roles, and has a major
effect on the organization of the business.

An understanding of the existing software, the imple-
mentation context of the change, may be obtained through a
reverse engineering approach. This approach provides com-
puter assistance, often using compiler technologies (lexical,
syntactic, and semantic analysis). Typically, this consists of
an automatic parsing phase followed by a more intensive dis-
covery phase that uses diverse pattern matching techniques
at textual, syntactic, structural, functional, or behavioral lev-
els [4].

The process of reverse engineering identifies software
building blocks, extracts dependencies, produces higher-
level abstractions to manage complexity, and presents perti-
nent summaries. One application is to produce architectural
views of the large-scale structure of the software. A classical
use of these views is to redocument an existing software sys-
tem whose documentation is lost or lacking. The end product
is better documentation and understanding, helping to guide
engineers to making the change properly.

This section considers the software analysis process and
requirements necessary for introducing program understand-
ing technology into the process. The metaprocess behind an
analysis process is discussed since it has important impli-
cations for the success of adopting program understanding
tools. Desirable features of tools to support effective analy-
sis are also described.

The complex nature of software analysis and program
understanding suggests a goal-directed approach oriented to
actual needs (and the circumstances that arise) instead of
a technology-oriented approach on perceived needs. That
is, program understanding technologies such as slicing [5],
structural redocumentation, type inference, pattern match-
ing, defect filtering, and program visualization need to be in-
serted within the context of actual needs and ultimately busi-
ness objectives.

A goal-directed strategy or metaprocess is more task-
oriented and tends to avoid the situation of a solution looking
for a problem. The proposed user-assisted strategy is based
on a paradigm of goal, question, analysis, tool, and action.
This paradigm is inspired by [6] and GQM [7], with the ex-
tension of integrating tool selection. The paradigm guides
the analyst from business, quality-related, or project-specific
goals and subgoals, through specific questions, through rel-
evant program understanding analyses, through appropriate
tools and features, to recommended actions for achieving the
goals.

Typically, a goal leads to finer subgoals and a tree of
questions, analyses, tools, and actions. A concrete goal-
to-action path is called a scenario and represents a distinct
task. An experienced analyst generally passes through mul-
tiple, related, possibly prioritized scenarios for analyzing a
request and achieving a particular goal. Each program un-
derstanding tool may have several suggested scenarios of us-
age. The compilation of such scenarios forms a useful, high-
level framework for the introduction of program understand-
ing tools and techniques to organizations as well as individ-

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

goal:

question:

analysis:

tool:

action:

goal:

question:

analysis:

tool:

action:

goal:

question:

analysis:

tool:

action:

goal:

question:

analysis:

tool:

action:

goal:

question:

analysis:

tool:

action:

ual developers and managers. These scenarios also need to
be publicized, reused, and evolved. The following are sev-
eral example scenarios.

For a corrective request to fix memory usage problems:

minimize defects

where to place the changes

run-time memory usage analysis

heap debugger

perform changes according to discovered
memory defects

For a corrective request to find coding standards viola-
tions:

minimize defects

what are the changes

defect filtering on coding standards viola-
tions

Software Refinery with defect filtering package

categorize and prioritize discovered defects

For a perfective request to reduce code size:

minimize maintenance effort

where to place the changes

textual redundancy analysis of cut-paste op-
erations

tool for analysis of redundancy in text [8]

factor code according to significant redundan-
cies

For a perfective request to better manage code complex-
ity:

minimize maintenance effort

who to perform changes

graph complexity of module interconnec-
tions

Rigi central and fringe components

assign senior personnel to maintain central
components and junior personnel to maintain fringe
components

For an adaptive change request to add a feature:

maximize customer satisfaction

where to place the change

structural redocumentation

Rigi views

consult architectural view for appropriate loca-
tion

Scenarios may be organized along at least five dimen-
sions to help determine which are applicable in a particular
context.

scope (global versus local),

granularity (large versus small),

abstraction level (textual, syntactic, structural, func-
tional, behavioral, application),

domain knowledge (implementation versus applica-
tion, general versus specific),

automation level (manual, semi-automatic, fully auto-
matic).

The goal-directed paradigm is an opportunistic, short-
sighted, but “real-world” strategy. Tools and techniques are
only invoked on a lazy, as-needed basis to answer some
question and achieve some goal. In general, this strategy is
natural as the understanding process itself is opportunistic,
iterative, and piecemeal. Analysts make intelligent guesses,
steer computations on-the-fly, gather many different pieces
of information, and then integrate the pieces in some sensible
way. Mechanisms and infrastructures become less important
than immediate results. Tools have to be effective within the
normal flow of real-world development.

However, some tools and techniques need a preprocess-
ing or priming stage that does not relate directly to a goal.
For example, a reverse engineering tool may need to parse
the source code into some program representation (or repos-
itory) that can more easily be queried and analyzed. Some
work products, like documentation, are useful mostly for
presumed future needs. For example, a view of detected de-
fects by category is useful to future inspection activities or
future analyses where a given defect needs to be compared
with prior ones. Such products are typically produced on
an eager basis with the intention that they benefit the future
(sometimes more so than the immediate present). House-
keeping, documentation, and support tasks that are part of
the tool’s methodology are outside the strict goal-directed
paradigm. Such tasks benefit more in the long term, making
program understanding technology insertion into the short-
term, results-driven change process more difficult. Thus,
there is an interplay of lazy and eager strategies to consider
when adopting tools.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2.2 Evolving the process

2.3 User needs

2.4 Tool requirements

Software change processes may evolve in three major
components [9]:

the software production process,

its metaprocess, and

the corresponding process support.

The evolution may occur in each component in isolation
or together mutually. The change production process may
evolve through new tools and techniques. The metaprocess
may evolve by a refinement in strategy that maintains the
same production process. Process support may be replaced,
extended, or refined as well.

New tools, techniques, and processes often cannot be in-
serted into the existing change process without further prepa-
ration. A study is required of current analysis needs. The se-
lection of new tools and techniques requires much evaluation
and a metaprocess in itself. Subsequently, we must prepare
the new target process, understand the inherent methodolo-
gies assumed by the approved tools and techniques, and de-
fine a process for the transition. The transition may involve
user training, motivation, data conversions, new terminol-
ogy, and changes in operating procedures. These activities
need to be enumerated and planned so that they can be bud-
geted and measured in terms of cost and status of progress.
The benefits of the new technology has to be gauged against
the cost of this transition. One strategy for measuring the ef-
fect of tool insertion is the Method for Planned Tool Insertion
described in [10].

Naturally, tool users have high expectations and want
guarantees. In particular, they want tools that:

bring results within the current release cycle,

offer industrial strength robustness and scalability,

come with long-term support,

can be integrated into the normal flow of development,

provide evidence of success in other industrial projects,

present a virtually zero learning curve, and

have low overhead.

Tools that focus mostly on the future may have difficulty
helping the analyst within the current release cycle. Some
of these expectations (like robustness) are very difficult to
attain, especially for tools that are research prototypes. In

some sense, tools may need to become more specialized (or
adaptable) to do a few things very well. Tools may also
need to be more lightweight in terms of methodology to af-
ford easier insertion into the current development environ-
ment. These needs will depend on how much the users want
to adapt themselves to the methodology. In general, the im-
plied process or methodology of a tool must somehow coex-
ist with (and not impose on) the goal-directed analysis pro-
cess.

Tool developers should not dwell on only the immediate,
short-term needs of the users. There are several desirable
features of the tools themselves to make them more effective
at:

codifying analysis experience,

capturing and exploiting historical information from
previous analyses,

exploring what-if cases,

providing useful documentation, and

easing manageability

These features are primarily beneficial in the long term for
future analyses.

Program understanding activities can be somewhat
chaotic, with analysts making guesses, questions, and
actions using their own experiences, heuristics, and judg-
ment. These activities need to become more mature and
systematic, but this is often difficult to achieve. Moreover,
the sequencing of guesses and applied heuristics are often
not captured. These difficulties may stem from the problem
that heuristics are often very domain-specific, whereas
mature and systematic techniques tend to be quite general.

One partial solution for capturing this domain-specific
experience is to write conceptual models to represent the
data and write process scripts or programs to codify the tasks
[11]. These scripts enact a process within the larger analy-
sis process and may be recorded automatically for quicker
process prototyping. The gathering and management of
these scripts forms important historical information for fu-
ture analyses in the same domain. The goal-driven frame-
work of scenarios can be augmented with script-driven,
domain-specific heuristics to help improve program under-
standing practice. Moreover, the framework needs to be an-
notated with reasons why a question or heuristic is applica-
ble.

Trial and error in program understanding may produce a
flood of work products because different inputs, cases, or an-
alysts. These products include data files, models, scripts, an-
notations, and views. A particular view may be the result of

3 Rigi

�

�

�

�

�

�

�

�

�

�

�

�

3.1 Methodology

a particular model, but not others. A model may be a refine-
ment of a past model. The analysis may need to be rolled
back to a prior stage. The examination of past and partial
work products may be useful toward capturing experience
for future analyses. What is needed is some form of ver-
sion management that supports such what-if analyses. Es-
sentially, we need bookmarks in time as well as space (that
is, support for a kind of electronic lab notebook for the pro-
gram understanding analyst [12]).

This section describes experiences with a specific tool
called Rigi. Rigi is a software environment under devel-
opment at the University of Victoria for program under-
standing. One aim is to extract abstractions from software
representations and transfer this information into the minds
of software engineers. The most recent results of the Rigi
project include:

an interactive graph editor,

a reverse engineering methodology,

measures for evaluating the quality of structural ab-
stractions [13],

a documentation strategy using views [14], and

an extension and integration mechanism via a scripting
language [15].

This environment can help answer some of the questions that
arise in the analysis parts of the software change process.

The reverse engineering methodology used when apply-
ing Rigi has evolved over the years and now consists of sev-
eral stages:

conceptual modeling,

feature extraction,

subsystem composition,

graph manipulation and analysis,

view creation,

script writing, and

user-interface customization.

Conceptual modeling involves defining the types of
nodes, arcs, and attributes that correspond to the artifacts
in the subject software system and concepts in the applica-
tion domain. This definition is used by the graph editor, cus-
tomizing it as part of a tool evolution approach to reverse en-
gineering.

Feature extraction is initially automatic and involves
parsing the source code of the subject system into a stream
of tuples representing software artifacts. This produces a flat
resource-flow graph of the software. To manage the com-
plexity, the extraction phase is followed by a largely semi-
automatic one that exploits human pattern recognition skills
to identify and compose subsystems.

Subsystem composition is a recursive process whereby
software building blocks such as data types, procedures, and
subsystems are clustered into composite subsystems [16].
This builds multiple, layered hierarchies as higher-level ab-
stractions that reduce the complexity of understanding large
software systems. The criteria for what comprises a sub-
system depends on the analysis goal, audience, and appli-
cation domain. For example, a subsystem may represent an
abstract data type, personnel assignment, defect category, or
any clustering concept.

The resulting software hierarchies can be manipulated,
visualized, and navigated with the graph editor. One possi-
ble use is to expose properties and anomalies of the software
structure for managing risk and deciding personnel assign-
ments. For example, highly complex, central components
are best handled by the senior maintainers. As a form of
“conceptual slicing”, an exact interface analysis computes
the dependencies to, from, and within a subsystem at any
level in the hierarchy;

A Rigi view is a snapshot or bookmark that reflects the
spatial state of the graph model and the visual state of the
user interface. In particular, a view is a reloadable bundle
of visual and textual frames that contain, for example, call
graphs, overviews, projections, exact interfaces, reports, and
annotations [17]. Each view reconstitutes a particular per-
spective to highlight maintenance constraints and problems.
The focus is to construct readable, accurate, and up-to-date
documentation about the subject system.

Rigi offers a scripting language that allows analysts to
codify reverse engineering activities. The analyst can com-
plement the built-in operations with external algorithms for
graph layout, metrics, software analysis, etc. Complex anal-
ysis tasks can be automated for more consistency and re-
peatability. The user interface is customizable in that menus
and dialogs can be added or modified through commands
in the language [18]. Script writing and user-interface cus-
tomization evolve the tool to better analyze the subject, as
part of prototyping and optimizing processes in the method-
ology.

in

isa

4 Example

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3.2 Tool insertion

4.1 Preparation

goal:

question:

analysis:

tool:

action:

When inserting Rigi into a goal-directed analysis
paradigm, we must consider the implied methodology of
the tool. Rigi has three major preparatory tasks: conceptual
modeling, feature extraction, and subsystem composition.
Since these prerequisite tasks are potentially quite involved,
they need to be prepared fully before any particular goal-
directed analysis takes place. The subsystem composition
stage is generally the most intensive and least able to be
automated. Even when subsystem composition can be
partially automated, someone still has to design, write,
and test the controlling scripts. The high overhead of this
stage poses a major problem for adopting Rigi in industrial
settings where time is often limited. Rigi also has three
major “forward thinking” tasks that tend to ease future uses
of the tool or future analyses. These tasks are view creation
(redocumentation), scripting writing, and user-interface
customization. Of all the stages in the methodology, graph
manipulation and analysis best conforms to the goal-
directed paradigm. This stage is highly interactive, and in
our experience, it seems the most readily understood and
exploitable by analysts that need specifics (such as module
dependencies).

One idea to increase the acceptance of Rigi may be to
have an expert take care of supporting tasks, such as:

modifying schemas in the conceptual model,

looking at previous change analyses to write useful
scripts,

maintaining required views,

supporting other analysts with particular program un-
derstanding needs,

evolving Rigi to new applications, and

demonstrating program understanding capabilities.

Realistically, having such a local expert to champion the
technology is likely more effective than training and moti-
vating every analyst in adapting and/or operating Rigi them-
selves. The expert can tailor the Rigi tool with specific con-
ceptual models and scripts for use by the other analysts. In
the past, we have sent our own Rigi developers to be these
experts, often as part of a pilot project where Rigi has to
prove itself on some non-trivial piece of industrial software.
Generally, this seems only fruitful if the developer can con-
sult for at least a few months to learn some domain-specific
knowledge about the subject software. Moreover, it is vital
that at least one analyst at the organization spends a signifi-
cant and successful time using Rigi. Otherwise, once the de-
veloper leaves, the tool remains unadopted.

This section describes an example scenario which uses
Rigi. It also indicates the amount of effort needed to an-
swer an analysis question; fortunately, much of this work is
reusable for future analyses. There is a corrective change re-
quest to fix a defect into a particular component:

minimize defects

whether to perform the change

dependency analysis

Rigi exact interfaces

perform change if no external components are
affected

The analysis determines the impact of changes to other com-
ponents should the given component be modified. The ex-
tent or scope of this impact is useful information for assign-
ing personnel and estimating the effort to fix the defect. Prior
to the analysis, there is a preparation phase. Following the
analysis, there is a forward-feeding phase that benefits future
analyses of the same kind.

The preparation involves: conceptual modeling, feature
extraction, and subsystem composition. The subject system
is a small list processing program, written in C, which uses a
list data type and an auxiliary element data type. The partic-
ular C conceptual model represents functions and data types,
with call or data access relationships among them. The spec-
ification of the model is through a file of triplets that is loaded
into the graph editor. The model is stratified into six increas-
ingly domain-specific levels, among three layers:

metaclass (modeling axioms, attributed graphs)

upper class (Rigi graph model)

middle class (Rigi concepts)

lower class (C concepts)

upper token (default values)

lower token (actual subject data)

Each triplet represents a verb, noun, and object. The
verb specifies an instance-of inheritance relationship be-
tween metaclass, class, and token layers. The verb speci-
fies an is-a inheritance relationship within a layer. The mod-
eling concepts are similar to Telos [19].

�

�

�

4.2 Graph analysis

upper class level -----
in RigiNode Node
in RigiArc Arc
in RigiAttr Attr

declare visible node/arc attrs
isa Label RigiAttr
isa Color RigiAttr
isa Icon RigiAttr
isa Position RigiAttr
isa Width RigiAttr

attach types of node attrs
Label RigiNode String
Color RigiNode String
Icon RigiNode String
Position RigiNode String

attach types of arc attrs
Label RigiArc String
Color RigiArc String
Width RigiArc Integer

middle class level -----
isa level RigiArc
level RigiNode RigiNode

lower class level -----
isa declarable RigiNode
isa type declarable
C struct
isa Data type
C function
isa Module declarable

isa call RigiArc
call Module Module
isa data RigiArc
data Module Data
data Data Data

ADT list ADT element

ADT list

Exact Interface for
subsystem ADT_list:

Provisions = 4

listcreate provides 1 object.
listfirst provides 1 object.
listinsert provides 1 object.
listnext provides 1 object.

listcreate -> main(src)

Here is part of the class layer:

The feature extraction is done through a C parser and gener-
ates triplets that comprise the lower token level of the model
for the subject program.

The subsystem composition phase is based on the crite-
ria of abstract data types, identifying both the list and ele-
ment data types and their corresponding access functions.
These data types and access functions are collapsed into
an subsystem and an subsystem
(Figure 1).

Figure 1: Abstract data type subsystems.

An exact interface or dependency analysis report can be
produced on demand for a selected subsystem (containing
the defect in question). The report provides three kinds of
information:

provisions,

requirements, and

internalizations.

A provision is a dependency from a node inside the subsys-
tem to a node outside the subsystem. A requirement is a de-
pendency from a node outside the subsystem to a node inside
the subsystem. An internalization is a dependency between
two nodes inside the subsystem.

Here is the report on the subsystem:

�

�

�

�

4.3 Forward feeding

Although the textual report may be sufficient, future
change-impact analyses may be more effective if the depen-
dencies can be visualized. This involves some script writing
to produce the visualization. The following script extracts
the required report data on the selected subystem and a given
set of dependencies.

The following script presents the extracted information
in a circular layout with four quadrants containing:

internalizations in the selected subsystem (northwest),

leaf nodes to and from which the subsystem provides
and requires (northeast),

leaf nodes to which the subsystem provides (south-
west), and

leaf nodes from which the subsystem requires (south-
east).

listfirst -> mylistprint(src)
listinsert -> main(src)
listnext -> mylistprint(src)

Requirements = 3

list requires 1 object.
listinsert requires 1 object.
listnext requires 1 object.

list <-
element(ADT_element)

listinsert <-
elementsetnext(ADT_element)

listnext <-
elementnext(ADT_element)

Internalizations = 6

listcreate internalizes 1 object.
listfirst internalizes 1 object.
listid internalizes 1 object.
listinit internalizes 1 object.
listinsert internalizes 1 object.
listnext internalizes 1 object.

listcreate <- list
listfirst <- list
listid <- list
listinit <- list
listinsert <- list
listnext <- list

proc slice { pA } {
set S [rcl_select_get_list]
set rn {}
set pn {}
set in {}

foreach s $S {
get exact interface
set ei \
[typed_node_interface $s $pA]

arcs are returned
set ra [lindex $ei 0]
set pa [lindex $ei 1]
set ia [lindex $ei 2]

get nodes
foreach n $ra {
ladd rn [rcl_get_arc_dst $n]
ladd in [rcl_get_arc_src $n]

}
foreach n $pa {
ladd pn [rcl_get_arc_src $n]
ladd in [rcl_get_arc_dst $n]

}
foreach n $ia {
ladd in [rcl_get_arc_src $n]
ladd in [rcl_get_arc_dst $n]

}
}
set common [lintersect $rn $pn]
set rn [ldiff $rn $common]
set pn [ldiff $pn $common]

get all nodes
set an {}
foreach n $rn {

lappend an $n
}
foreach n $pn {

lappend an $n
}
foreach n $common {

lappend an $n
}
foreach n $in {

lappend an $n
}
return [list $rn $pn \

$in $common $an]
}

5 Summary

proc circle { L } {

rcl_select_all
rcl_open_projection

set q(0) [lindex $L 0]
set q(1) [lindex $L 1]
set q(2) [lindex $L 2]
set q(3) [lindex $L 3]

rcl_select_none
foreach n [lindex $L 4] {

rcl_select_id $n 1
}
rcl_select_invert
rcl_filter_selection

rcl_select_all
rcl_scale_none
rcl_set_scale_factor 25
rcl_scale_by_factor
got all the nodes involved

set a 500
set b 500
set pi 3.1415926

for {set i 0} {$i < 4} \
{incr i} {

set d [expr ($pi / 2) / \
([llength $q($i)] + 2)]

set t [expr $i * $pi / 2]

foreach n $q($i) {
rcl_set_node_position $n \

[expr round($b * cos($t)) + $b] \
[expr round($a * sin($t)) + $a]

set t [expr $t + $d]
}

}
rcl_refresh

}

If necessary, the subsystems that contain the leaf nodes can
be visualized in an overview window of the subsystem hier-
archy.

Using the diagram, dependencies to and from the subsys-
tem and procedure(s) containing the defect can be seen (Fig-
ure 2).

Figure 2: Circle layout of dependencies.

Program understanding tools and techniques can play an
important role in the analysis part of the software change
process. In particular, tools such as Rigi can use exact inter-
faces to help answer the question of whether certain changes
should proceed. It is important to recognize the issues limit-
ing the adoption of program understanding technology.

Tools have their own implied methodologies and pro-
cesses. These implied processes need to coexist within
an analysis process that is naturally goal-directed. How-
ever, some tools have substantial preparation and forward-
feeding activities. This and other methodology overhead
may account partly for the difficulty of introducing certain
program understanding tools into the development environ-
ment, where the tool users have expectations of quick, guar-
anteed results, with no learning curve.

Lightweight tools that are specialized or adaptable to do
a few things very well may be needed for easier technol-
ogy insertion. Toward this need, Rigi supports tool evolu-
tion, where the tool becomes more domain-specific. Strate-
gies such as conceptual modeling and script writing are used
to help capture analysis experience and knowledge about the
business.

References

Acknowledgments

Practical Software Metrics for
Project Management and Process Improvement

IEEE Software

Advances in Computers

Proceedings of the
Second International Conference on Computers and
Applications

IEEE Software

ACM SIGSOFT Software Engineering
Notes

Domain-Retargetable Reverse Engi-
neering

SIGDOC ’92: Proceedings of the 10th Annual Inter-
national Conference on Systems Documentation

International Journal of Software En-
gineering and Knowledge Engineering

Journal of Soft-
ware Maintenance: Research and Practice

Proceedings of the Inter-
national Conference on Software Maintenance

Proceedings of the
1993 CAS Conference

Many thanks go to Paul Sorenson for his helpful com-
ments on the paper, Hausi Müller for his support, and Nazim
Madhavji and Jacob Slonim for their thoughts on technology
transfer.

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the IBM Soft-
ware Solutions Toronto Laboratory Centre for Advanced
Studies, the IRIS Federal Centres of Excellence, and the
University of Victoria.

[1] Robert B. Grady.
. Pren-

tice Hall, Englewood Cliffs, New Jersey, 1992.

[2] Erich Buss and John Henshaw. Experiences in pro-
gram understanding. Technical Report TR-74-105,
IBM Canada Laboratory, Toronto, Ontario, Canada,
July 1992.

[3] Kenny Wong, Scott R. Tilley, Hausi A. Müller, and
Margaret-Anne D. Storey. Structural redocumentation:
A case study. , pages 46–54, January
1995.

[4] James H. Cross II, Elliot J. Chikofsky, and Charles H.
May Jr. Reverse engineering. ,
35:199–254, 1992.

[5] James R. Lyle and Mark Weiser. Automatic program
bug location by program slicing. In

, pages 877–, Beijing, China, June 1987.
IEEE Computer Society Press.

[6] Kostas Kontogiannis, Morris Bernstein, Ettore Merlo,
and Renato De Mori. The development of a partial de-
sign recovery environment for legacy systems. In Gaw-
man et al. [20], pages 206–216.

[7] Victor Basili and Scott Green. Software process evo-
lution at the SEL. , pages 58–66, July
1994.

[8] J. Howard Johnson. Identifying redundancy in source
code using fingerprints. In Gawman et al. [20], pages
171–183.

[9] Reidar Conradi, Christer Fernstrom, and Alfonso
Fuggetta. A conceptual framework for evolving soft-
ware process.

, 18(4):26–35, October 1993.

[10] Tilmann Bruckhaus. The impact of inserting a tool into
a software process. In Gawman et al. [20], pages 250–
264.

[11] Scott R. Tilley.
. PhD thesis, University of Victoria, Victoria,

British Columbia, Canada, 1995.

[12] Kenny Wong. Understanding software architecture
and behavior through integrated structural and run-
time analysis. Research proposal, 1994.

[13] Hausi A. Müller and Brian D. Corrie. Measuring
the quality of subsystem structures. Technical Re-
port DCS-193-IR, Department of Computer Science,
University of Victoria, Victoria, British Columbia,
Canada, November 1991.

[14] Scott R. Tilley, Hausi A. Müller, and Mehmet A.
Orgun. Documenting software systems with views. In

, pages
211–219, Ottawa, Ontario, Canada, October 1992.
ACM Press.

[15] Scott R. Tilley, Kenny Wong, Margaret-Anne D.
Storey, and Hausi A. Müller. Programmable reverse
engineering.

, 4(4):501–520,
December 1994.

[16] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley,
and James S. Uhl. A reverse engineering approach
to subsystem structure identification.

, 5:181–
204, 1993.

[17] Kenny Wong. Managing views in a program under-
standing tool. In Gawman et al. [20], pages 244–249.

[18] Scott R. Tilley. Domain-retargetable reverse engineer-
ing II: Personalized user interfaces. In Hausi A. Müller
and Mari Georges, editors,

, pages
336–342, Victoria, British Columbia, Canada, Septem-
ber 1994. IEEE Computer Society Press.

[19] John Mylopoulos. Conceptual modelling and Te-
los. Technical Report DKBS-TR-91-3, University of
Toronto, Toronto, Ontario, Canada, November 1991.

[20] Ann Gawman, M. Gentleman, Evelyn Kidd, Per-Ake
Larson, and Jacob Slonim, editors.

, Toronto, Ontario, Canada, Oc-
tober 1993. IBM Centre for Advanced Studies.

