On Designing an Experiment to Evaluate a Rever se Engineering Tool

M.-A.D. Storey' K. Wong' P. Fong*

tSchool of Computing Science
Simon Fraser University
Burnaby, BC, Canada

Abstract

The Rigi reverse engineering system is designed to an-
alyze and summarize the structure of large software sys-
tems. Two contrasting approaches are available for visual-
izing software structures in the Rigi graph editor. The first
approach displays the structures through multiple, individ-
ual windows. The second approach, Simple Hierarchical
M ulti-Per spective (SHriMP) views, empl oysfisheye views of
nested graphs. This paper describes the design of an exper-
iment to evaluate these alternative user interfaces. Various
results from a preliminary pilot study to test the experiment
design are reported.

1 Introduction

Numerous reverse-engineering tools have been devel-
oped to assist in software maintenance by providing meth-
ods to uncover the original (or existing) design of software
systems. The usability of thesetoolsiscritical to their effec-
tiveness. This paper evaluates a particular reverse engineer-
ing tool called Rigi.

TheRigi systemissuitablefor extracting, analyzing, and
documenting the structure of large software systems [1, 2].
The reverse engineering process involves parsing a subject
software system, resulting in a graph where nodes represent
system artifacts such as functions and datatypes, and arcs
represent dependencies among the artifacts. A hierarchy is
then imposed on the flat graph by building subsystem ab-
stractions. Software maintainers can subsequently browse
and annotate these software hierarchies to aid in program
comprehension.

Currently, there are two aternative approaches avail-
able in Rigi for browsing subsystem hierarchies [3]. The
first (original) approach displays a hierarchy using multi-
ple, overlapping windows, where each window displays a
portion of the subsystem hierarchy. A second (newer) ap-
proach, Simple Hierarchical M ulti-Perspective (SHriMP)
views, employs a nested graph formalism to display a sub-

D. Hooper! K. Hopkins? H.A. Mller

fDepartment of Computer Science

University of Victoria
Victoria, BC, Canada

system hierarchy in a single window [4]. A zoom algo-
rithm, based on a fisheye-lens metaphor, automatically en-
largesand shrinksportionsof the graph to ease browsing and
navigation in the hierarchy.

The SHriM P approach was devel oped in responseto sev-
era deficiencies identified with the multiple window ap-
proach. For larger systems, the hierarchy may be very deep
and many windows may need to be opened. Positioning and
resizing these windowsto keep pertinent information visible
can betedious. Sincetherelationshipsbetween windowsare
typicaly implicit, it is easy to lose context and become dis-
oriented while navigating larger systems.

The SHriMP interface is implemented in the Tcl/Tk [5]
language and is currently a library that has been integrated
into the Rigi system. Although Tcl/Tk is apowerful tool for
rapid prototyping, one of its shortcomingsis that the graph-
icsarevery slow and not suitable for interactively browsing
large software graphsin Rigi. The designersof the Rigi sys-
tem intend to tightly couple thisinterface with the Rigi tool
for improved performance. Before undertaking this task, it
iswiseto evaluate this interface and compare it to the exist-
ing Multiple Window interfacein Rigi, to ascertain thevalue
and focus of areimplementation.

This paper describesthe design of an experiment to eval-
uate these two approaches. The experiment design has been
refined through its application in a pilot study. Preliminary
results from the pilot study are reported.

Thetwointerfacesare compared to each other and also to
Unix command-linetools (vi and gr ep). Rigi can be used
both for creating and browsing software hierarchies. Theex-
periment presented in this paper only addressesthe browsing
capabilities of Rigi. However, observations were also made
by the Rigi expertsasthey prepared software hierarchiesfor
usein the pilot study.

Before undertaking the pil ot study, we expected that Rigi
would show the most significant advantage in tasks requir-
ing the user to exploredependency rel ationshipsbetween the
functions and data types in the program. We expected that
the SHriMP interface would provide a significant speed and
ease-of -use advantage over the standard Rigi interface when

task completion requires the exploration of heavily nested
dependency graphs. In addition, it was expected that the
SHriMPinterfacewould aleviatethelost in space syndrome
experienced by users as they navigate deep hierarchies.

Section 2 describes the two available user interfaces for
navigating software structuresin Rigi. Section 3 outlinesthe
experiment design and specifics of the pilot study. Section 4
presents the preliminary results of the pilot study. Section 5
interpretsthe pilot study results, suggestsrefinementswhich
should be made to the experiment design, and provides rec-
ommendations for changes to improve the usability of the
Rigi tool. Section 6 is the conclusion.

2 TheRigi system

Rigi is a system for extracting, analyzing, visualizing
and documenting the structure of evolving software systems.
Software structures are manipulated and explored using a
graph editor. The following two subsections describe two
alternative approaches for exploring software hierarchiesin
Rigi.

2.1 Multiple window approach

In the original Rigi approach, a subsystem containment
hierarchy is presented using individual, overlapping win-
dows that each display a specific portion of the hierarchy.
For exampl e, the user can open windowsto display apartic-
ular level in the hierarchy, a specific neighborhood around a
software artifact, a projection or flattening of the hierarchy,
or the overall tree-like structure of the entire hierarchy,

Figure 1 showsthe multiplewindow approachin Rigi for
presenting the structure of asmall sample program. The pro-
gramroot node, entitled src, isdisplayedin Fig. 1(a). A user
displaysthe next layer in the hierarchy by doubleclickingon
the src node, see Fig. 1(b). Thislayer consists of the main
functionand two subsystems, List and Element. Arcsinthis
window are called composite arcs and represent one or more
lower level dependenciesin the graph.

The List subsystem has been opened in Fig. 1(c). Nodes
in this window are leaf nodes and directly correspond to
functions or datatypes in the software. Arcsin this window
represent either call or datadependencies. Figure 1(d) shows
an overview of the software hierarchy and provides context
for the other windows. Arcs in the overview window are
called level arcs as they represent the parent-child relation-
shipsin the hierarchy. Finally, Fig. 1(e) shows a projection
fromthesrc node. Thisoperation hasthe effect of flattening
the hierarchy and displays all of the lower level dependen-
cies and artifactsin a single window.

2.2 SHriMP views

The SHriMPvisualizationtechniqueoffersan alternative
approach for navigating and manipul ating subsystem hierar-
chiesin Rigi. In this approach, nested graphs represent the
structure and organization of the software. The nesting fea-
ture of nodes communicatesthe hierarchical structure of the
software (e.g. subsystem or class hierarchies). A fisheye-
view visualization techniqueis used to enlarge nodes of cur-
rent interest while concurrently shrinking the remainder of
the graph. Fisheye views, an approach proposed by Furnas
in 1986 [6], provides context and detail in one view. This
display method is based on the fisheye-lens metaphor where
objects in the center of the view are magnified and objects
further from the center are reduced in size.

The same program is again used to demonstrate how this
interface may be used for visualizing software. A user trav-
els through the hierarchy by opening nodes. Nodes and arcs
representing the next layer of the hierarchy are displayed in-
side the open node, as opposed to being displayed in a sep-
arate window. In Fig. 2(a) the src node is displayed as a
large box. When this node is opened, its children are dis-
played inside the node as shown in Fig. 2(b). In Fig. 2(c)
List’s children are displayed inside the List node when it is
opened. The Element node has been opened in Fig. 2(d).
Thisview showsthe same information as the overview win-
dow from the Multiple Window approach. The containment
feature of the nested nodes depicts the parent-child relation-
ships among nodes in the software hierarchy.

Composite arcs may be opened in the SHriMP views to
show thelower-level dependenciesthat the arcsrepresent. A
user opens a composite arc by double-clicking on it to dis-
play the lower-level arcs. In Fig. 2(€) composite arcs be-
tween the main function and the List and the Element sub-
systemshavebeen opened. Inthisview, al of thelower level
dependenciesand artifacts are visible.

The next section in this paper describes the design of an
experiment to evaluate these two interfacesin Rigi.

3 Experimental methods

This section describes the design of an experiment to
evaluate the usability of three user interfaces:

Command-Line: online source code and documentation,
withvi and gr ep Unix command-linetoals;

Multi-Win: multiple window approachin Rigi;
SHriMP: SHriMP views approach in Rigi.

Each interfaceistested by asking the usersto completea se-
ries of typical software maintenance tasks under controlled

Lo
|
|

| — '3

—
tf et

I| sk il

Timkhknid

B o
E

RwiThret gt Laneci

B
B

limlarrals

— — I 5 — E o — =
Hade “sre” selecand | Mot "Lt sepcied | vden s ez e
@ (b) (c)

[(- R -
. |
e [P T N [T P ——
. - I Himi Mermi plemraimmpl]ivisrks ol ree e erewie
widi Elraesi Lisi “

-

 — w
11 i i E

(d)

Figure 1: (a) This window contains the root node of the program, entitled src. (b) This window contains the children of
src: main, List and Element. (c) Thiswindow appears when a user opens the List node. (d) Thiswindow is an overview
window and provides context for the other windows. (€) A projection from the src node is performed to show lower level

dependencies between the subsystems.

and supervised conditions. After finishing the tasks, the
users are asked to complete a prepared questionnaire. Fi-
nally, informal interviews are conducted to stimulate the
users into revealing relevant thoughts not expressed while
answering the questionnaire.

A small pilot study was conducted at the University of
Victoria and Simon Fraser University according to the ex-
periment design. Parameters of this study to test the design
are mentioned in the relevant following subsections.

3.1 Hypothesis

Null hypothesis: Command-Line, Multi-Win, and
SHriMP are (pairwise) equally effective under the same
conditions.

3.2 Experimental variables

The independent variables in the experiment are:
e the user interface,
e complexity of the test program,
e complexity of software maintenancetask, and
o level of user expertise.

Thefollowing dependent variables are assumed to be in-
fluenced:

e correctness of tasks,
o timetaken to complete tasks,

e subjective user satisfaction, confidence, and productiv-
ity.

@

main

listinit | listid

(d)

Src

maU

List
mylistprint | listinit listid

listfi rétmr

listinsert list
B ——— ’/—E‘Eﬁ ent

listcreate

(©

listid| lis!

()

Figure2: (a) Thisfigureshowstheroot nodeof the program, entitled src. (b) Thisfigure showssrc’schildren: main, List and
Element, displayed inside src. (c) Thisfigure shows how List’s children nodes are displayed inside List when it is opened.
(d) The Element node has also been opened to display its children showing an overview of the entire system. (€) Composite

arcs are opened to display lower level dependencies.

3.2.1 User interfaces

To effectively increase the number of usersin the pilot study,
each user was assigned tasks using each of the three inter-
faces. This had the added advantage that the users can also
compare the usability of the three interfaces. For each user,
the Command-Line interface was tested first, followed by
Multi-Win, with SHriMP last. Although some biasis intro-
duced because of thisfixed order, itisunavoidableunlessthe
group of usersis large enough to allow randomizing the or-
der of theinterfaces.

3.22 Test programs

If asingle program is used throughout the experiment, then
knowledge gained by a user from examining the program
using one interface could be exploited while using a sub-

sequent interface. To prevent this, a different program is
needed for each interface tested by a user. Since each user
tests three interfaces, three different programs are required.
Some bias is introduced since the programs are necessarily
different. To offset this bias, the assignment of a programto
auser interfaceisrandomized uniformly over all usersinthe
experiment.

Because of this randomization, the three programs need
not be of similar size or complexity. By selecting programs
of varying size, it is possible to examine the effect of pro-
gram size on the use of each interface.

In the pilot study, we used three programsthat were sim-
ilar in complexity but differed in size.

The programswere implementations of gameswrittenin
the C language:

Fish: approx. 300 lines, one sourcefile;
Hangman: approx. 300 lines, 12 sourcefiles,
Monopoly: approx. 1700 lines, 18 sourcefiles.

These lines of code counts do not include comments.

3.2.3 Tasks

A common series of tasks is assigned to each user. lde-
ally, complex software maintenance tasks involving several
steps could be prepared. Due to time constraints, a trade-off
between task complexity and task completion time is nec-
essary. Instead of asking users to perform particular tasks
(such as fixing a software bug), we chose to have them per-
form small tasksthat are commonly done by software main-
tainers to attain larger goals of fixing errors or adding new
features.

In the pilot study, there were two categories of tasks: ab-
stract and concrete. Abstract tasks are high-level program
understanding tasks and involve gaining an understanding
of the overall structure or design of the program. Concrete
tasksarelow-level program understanding tasksand may in-
volve understanding only small portionsof thetest program.
Answers to the concrete tasks should be unambiguous.

Reasonable time limits on the individual tasks should be
imposed to ensurethat all tasks are at |east attempted. In the
pilot study, userswere given 20 minutesto completeall eight
tasks, where each task had aset timelimit. If auser could not
finish atask by the allotted time, we would remind the user
to leave it and move on to the next task.

3.24 User expertise

The level of user expertise and skill will affect an individ-
ual’s performance. Also, user familiarity with the vi and
gr ep tools gives an unfair advantage over the Rigi inter-
faces. However, wetried to offset this advantage by training
the users on the Rigi interfaces and by having experts pre-
pare software hierarchies of the test programsfor each of the
interfaces. In the pilot study, 12 users of similar skill level
participated in the experiments. The users volunteered their
time and were unpaid. These 12 users consisted of 10 grad-
uate students and 2 senior undergraduate students from the
University of Victoriaand Simon Fraser University.

Domain knowledge can give a user a head start by pro-
viding useful preconceptions. This knowledge may con-
tribute significantly to program understanding and must be
considered. For the pilot study, the first task asks whether a
user is familiar with the game implemented by the test pro-
gram.

3.3 Experimental procedure

The experimental procedure for each user is outlined in
Fig. 3. Experiments may be run in parallel but in separate
rooms. In this case, it may be best to train multiple users at
the sametime. Inthe pilot study, each user experiment lasted
between 1.5 and 2 hours.

v

Training

)

Online Questionnaire |

!

Rigi Questionnaire |

v

SHriMP Questionnaire |

|

| Overall Questionnaire |
Interview

Figure 3: Phases of the experiment.

| Online Tasks

| Rigi Tasks

| SHriMP Tasks

331 Setup

In any experiment, properly controlled conditions are
needed to obtain results with reasonable confidence. The
experimenter’s handbook details what must be done during
each phase of the experiment. The handbook specifies
how to introduce the users to the experiment and pro-
vides instructions on setting up the workstation for each
phase. These protocols ensure that the experiment proceeds
smoothly and consistently, reducing the likelihood of
mishaps that might affect user performance.

3.3.2 Training

For each user interface, a specific training modulein the ex-
perimenter’ shandbook outlinesthefeaturesto be used by the
users, along with demonstrations of several example tasks.
Inthe pilot study, we emphasized that theinterfaceswere
being tested, not the users. To reduce frustration due to time
congtraints, we also told them that we did not expect them
to complete all the tasks, but that we were more interested
in how they attempted to solve a task using a particular in-
terface. This helped relax the users considerably, although
it appeared that they did strive to complete the tasks cor-
rectly. The training time took between 30 and 40 minutes

for each user. The user did not perform any practice tasks.
We stressed that users did not have to remember how to ac-
cess dl of the features. They could ask for help during the
experiment, but not ask for assistance in completing a task.
3.3.3 Tasks
The abstract tasks used in the pilot study were:

1. Show familiarity with the game.

2. Summarize what subsystem x does.

3. Describe the purpose of artifact «.

4. Onascaleof 1-5, how well wasthe program designed?

The concrete tasks for the pilot study were:

5. Find al artifacts on which artifact « directly or indi-
rectly depends.

6. Findall artifactsthat directly or indirectly depend on ar-
tifact x.

7. Find an artifact that is not used.

8. Find an artifact that is heavily used.

3.3.4 Questionnaire

The questionnaire is designed to evaluate and compare the
usability of theinterfacesthrough user feedback. Thedesign
of theusability questionnaireisbased onthe | BM Post-Study
System Usability Questionnaire (PSSUQ) [7]. Thequestion-
naire is presented to a user after all tasks have been com-
pleted with a given user interface.

For the pilot study, we adapted the PSSUQ slightly to ask
20 questionsin 5 categories:

overall: all 20 questions evaluate overall user satisfaction;
sysuse: 8 questions evaluate interface usefulness;
interqual: 3 questions evaluate interface quality;

organization: 4 questions evaluate helpfulness of module
organizationsin the interface;

confidence: 4 questions evaluate user confidencein the an-
swers generated by the interface.

Questions in a category are subtle rewordings of each other
to help stimulate responses. The ordering of all questions
were randomized.

In addition, thefollowing questionswere asked in the pi-
lot study after auser had completed testing all of the user in-
terfaces.

1. Rank the three systemsin order of their perceived ef-
fectiveness at helping to understand the software.

2. Hypothetically choose a system for a future software
mai ntenance project.

3. Name the three most preferred features in the user in-
terfaces tested.

3.3.5 Interview

An informal interview is held at the close of each experi-
ment. The purpose hereisto determine what difficultiesthe
usersencounteredin using eachinterface and to extract more
about their opinions of usahility.

3.4 Recording observations

It is not possible to extract all the required results from
task answers and questionnaires alone. To determine ex-
pected and unexpected difficulties, experimenters need to
record observationsof the userscompleting thetask sets. For
example, a user may correctly answer atask by using an un-
orthodox method or even by pure chance. The experimenter
verifies assumptions about what the user is thinking by ask-
ing appropriate questions, taking care not to unduly inter-
rupt. After the task set has been completed and while the
user fillsin the questionnaire, the experimenter also records
asummary of how the user performed.

In the pilot study, we used several methods of recording
observations:

Think aloud: The users were asked to verbalize their
thoughts asthey attempted atask. Thisallowed the ex-
perimenter to gain a better understanding of what each
user was trying to accomplish.

Video taping: One or two video cameras recorded each of
the experiments, where one camera captured actionson
the computer screen and the other captured the user’s
facial expressions and verbal comments.

Experimenter comments. Most of the experiments had
two experimenters present. One experimenter inter-
acted with the user whilethe other served asasilent ob-
server.

3.5 Analyzingtheresults

To maintain consistency while assessing the correctness
of the tasks, experimenters make use of prepared answer
keys. The assessment of answers to the abstract tasks are
somewhat subjective.

Inthe pilot study, for the task results, we looked for non-
normality of the samples, performed an ANOVA with the

Scheffé method, and computed two-sample t tests, where
possible, to determine instances where the null hypothesis
could be rejected.

4 Pilot study results

The purpose of the pilot study wasto evaluate the exper-
iment rather than the interfaces. Nevertheless someinterest-
ing results were observed that could serve as interesting hy-
potheses for the next experiment. This subsection describes
the results from the pilot study.

41 Task results

Thetaskswerejudged using a prepared answer key. Due
to the small sample size, tasks 1 and 4 were not included in
the analysis. (Task 1 determined the user’s domain knowl-
edge of the game and task 4 enquired about the user’s men-
tal model of the program.) The results of the other tasks
appear in Table 1. There were some findings where the
null hypothesiswas rejected (one interface found less effec-
tive or worse than another). For concrete tasks on the large
Monopoly program, Command-Line was worse than Multi-
Win (P = 0.01) and Command-Linewasworsethan SHriMP
(P=0.0005). For concrete tasks on the very small Fish pro-
gram, Command-Line was worse than SHriMP (P = 0.05)
and Multi-Win was worse than SHriMP (P = 0.005), with
Command-Line tending to be somewhat better than Multi-
Win(P=0.1).

4.2 Questionnaireresults

Preliminary results seem to suggest that the users were
more satisfied with SHriMP than Multi-Win, and more sat-
isfied with Multi-Win than Command-Line. A different pic-
ture emerges, however, when the results are divided ac-
cording to the three test programs (see Fig. 4). Looking at
the “overall” questionnaire category, user satisfaction with
SHriMP islower than Multi-Win for the Monopoly test pro-
gram. Thesame pattern holdsfor the other questionnairecat-
egories.

When asked to hypothetically choose a user inter-
face for their next software maintenance project, 8 users
chose SHriMP, 3 chose Multi-Win, and only 1 user chose
Command-Line.

4.3 Observations
This subsection describes observations made for each of

the threeinterfaces. The quotesrelating to each of the inter-
faces were made by users during the experiments.

4.3.1 Command-Line

“If | knew the structure of the program maybe |
could guess what is called frequently.”

For the most part, the users were able to effectively utilize
the vi and grep tools, due to previous programming expe-
rience with these tools. For those with extensive program-
ming experience, their performance with this interface was
quite successful.

Some of the tasks may have been unredlistic for the
Command-Line tools and may have been biased towards
the Multi-Win and SHriMP interfaces. For example, atask
which asksto nameall functionscalled directly or indirectly
by another function is a much easier task for the Rigi tool.
More experienced users often used heuristics, or “guesses’
totry to answer these types of tasks. When auser had an un-
derstanding of how thegamesare played, they would usethis
knowledge to answer the question. Other users went about
these tasks in an ad hoc manner, and quickly gave up. Only
afew attempted to thoroughly and accurately complete the
tasks.

4.3.2 Multi-Win

“ It would be necessary to get more familiar with
Rigi [Multi-Win] in order to properly judgeit.”

In general, many of the users seemed quite pleased with the
graphical representation of the software. However, some
problems were often observed. Most of the users had diffi-
culties understanding the purpose of the overview window.
Arcs in this window show the parent-child relationships of
subsystems, but these arcs were often confused with call or
data dependency relationshipsthat are shown in the general
windows.

In addition, many users did not at first remember that a
composite arc represents one or more lower-level arcs. In-
deed, they had to be reminded that the projection featurein
Multi-Win should be used to view the lower-level dependen-
cies. Some had to be reminded of this more than once.

Thetraining time for Multi-Win wastoo short. Thiswas
obvioussincetheuserswereinitially unsurehow to solvethe
first few tasksusing Multi-Win. They did improvetheir per-
formance during the experiment, but they still had to ask for
help with the interface.

Also, users often opened windowsthat were already dis-
played. This increased the user’s cognitive load as they
scanned the windows trying to identify pertinent artifacts.

433 SHriMP

“When you gave the tutorial ... | thought that
SHriMP would be the worst ... but it turned out
that it was easier.”

Table 1: Task Results

User Interface | Test Program | Task Type | Mean | Std Dev | Variance
Command-Line | Fish Abstract 0.72 0.36 0.13
Concrete 0.75 0.38 0.14

Hangman Abstract 0.83 0.30 0.09

Concrete 0.56 0.44 0.19

Monopoly Abstract 0.47 0.47 0.22

Concrete 0.52 0.45 0.20

Multi-Win Fish Abstract 0.84 0.23 0.05
Concrete 0.55 0.42 0.18

Hangman Abstract 0.65 0.43 0.18

Concrete 0.68 0.47 0.22

Monopoly Abstract 0.60 0.42 0.18

Concrete 1.00 0.00 0.00

SHriMP Fish Abstract 0.88 0.31 0.09
Concrete 0.96 0.10 0.01

Hangman Abstract 0.88 0.23 0.05

Concrete 0.79 0.40 0.16

Monopoly Abstract 0.75 0.35 0.13

Concrete 0.95 0.15 0.02

The SHriMP interface appeared to be quite intuitive. The
users liked being able to see al of the nodes in one win-
dow because they could better see how everything was con-
nected. In particular, opening composite arcs seemed in-
tuitive. However, we did observe some users would only
open compositearcs connected to theimmediate parent node
whentryingto view lower-level dependenciesconnectedtoa
particular node. They would often overlook composite arcs
which were connected to higher level s of subsystem abstrac-
tions.

Displaying everything in one window did lead to some
complaints. Users had difficultiesin determining the nodes
that an arc connected. This happened especially when sev-
eral composite arcs were opened to show many lower-level
arcs. Most users dealt with this complexity by movingirrel-
evant nodes to one side to give aclearer view of the arcs of
interest.

Tcl/Tk was useful for rapid prototyping of the SHriMP
interface. However, the responsiveness of the resulting in-
terface was poor for large graphs. Operations to move and
scale nodes were particularly tedious. Many users quickly
realized this and gave up trying to move or scale nodes in
larger graphs.

5 Discussion

In this section, we discuss the results from the pilot
study experiment. These include an interpretation of the
tasks and questionnaires, suggested refinementsto the exper-
iment, and recommendations for changes to the Multi-Win
and SHriMP interfaces.

5.1 |Interpretation of results

From thetask results (which measurethe effectiveness of
the systems), there was a dlight tendency for Multi-Win to
outperform Command-Line and for SHriMP to outperform
Multi-Win. However, this may be due to the bias of fixing
the order of the interfacesfor each user. The users probably
gained knowledge on how to tackle the tasks using the first
two interfaces even though test programs differed.

Based on the concrete task results, the users seemed
to use Command-Line more effectively than Multi-Win for
smaller programs. This contrasts with the questionnaire re-
sults which suggest that the users preferred Multi-Win even
for the smaller test programs. This confirms other experi-
ments that compared graphical and textual representations
of software. In those experiments, user performance did
not improve with graphical representations, even though the
users perceived them as more effective[8].

The questionnaires ranked the Multi-Win interface over
the SHriMPinterfacefor thelarger Monopoly program. This

Better 7

Usability Score

Fish Hangman

Test Program

Il Command-Line
~ | Multi-Win

L |[] SHriMP

Monopoly

Figure 4: This chart shows the usahility scores for the overall questionnaire category.

suggests that user satisfaction might be sensitive to the pro-
gram size; users are less satisfied with SHriMP when they
are dealing with a large program. Two plausible explana
tions are: (1) responsiveness of the SHriMP interface was
dow; (2) too many arcs cluttered the SHriM P window.

5.2 Refinements

In conducting the pilot study, several minor difficulties
and afew major problemswith our initial experiment design
were uncovered.

We performed a dry run of the experiment using an ex-
perienced Rigi user. This early test identified major prob-
lems which were remedied for the pilot study. Admittedly,
we did not have the foresight to develop an experimenter’s
handbook. The necessity of such a document was realized
immediately upon running this test. We also realized that
the original prescribed tasks were not simple enough to be
completed in the time alotted. Some tasks were removed.
The final task set used in the pilot study was described in
Sec. 3.3.3.

To support auseful statistical analysis, more users, more
tasks, task timings, and tighter controls over the running of
the experiment are needed.

A concern with the current experiment design is that
users can learn from performing tasks with preceding inter-
faces, influencing their performance with subsequent inter-
faces. Given enough users, future experiments must either
randomize the order of the user interfaces or normally dis-
tribute the users into three groups where each group tests
only oneinterface.

A longer experiment time would help since the training
phase was too short for users to learn how to use all three
interfaces effectively. Practice tasks should be a part of the
user training.

All users had difficulty overcoming idiosyncrasiesin the
Multi-Win and SHriMP interfaces, due to the prototypical
nature of both interfaces. These problems are discussed in
the next subsection.

5.3 Recommendations

Based on observations and user comments, several im-
provementsto the Multi-Win and SHriMPinterfacesarerec-
ommended.

In Multi-Win, users often forgot (or never discovered)
the context of individual windows. They often opened sev-
eral windows of the same view, failing to recognize that
these viewswere already available. Someway of emphasiz-
ing the relationship of the open windowsto the correspond-
ing composite nodesis needed.

There was also confusion between the interpretation of
the general windows and the hierarchy overview. Some
users misinterpreted the parent-child relationships in the
overview as call or data dependencies. The appearance of
the overview window should differ from the general win-
dows. This might be achieved by simply having different
background colorsfor the different window types.

The single most important problem with SHriMP views
wasthe slow response of theinterface. Since SHriMP views
are based on direct manipulation, users expecting immedi-
acy were disturbed by the dow response. This must be ad-

dressed in a future reimplementation of the SHriMP inter-
facein Rigi.

Another problem with SHriMP was that it is possible to
become intimidated by the large number of arcsrevea ed by
opening several composite arcs. Methods to make it easier
to identify arcs of interest and filter uninteresting arcsarere-
quired.

For the experiments, four Rigi experts created software
hierarchies for each of the three programs. One set of hier-
archies was then selected to be used in the pilot study. For
the smaller programs, it took around 30 minutes to create a
software hierarchy, and around 45 minutesfor the Monopoly
software hierarchy. These experts made use of both inter-
faces, but were particularly satisfied with the ability to see
multiple levels of abstraction concurrently in the SHriMP
views. The SHriMP interface was deemed more desirable
for the drag and drop paradigm of adding nodes to subsys-
tem abstractions.

In general, both the Multi-Win and SHriMP interfaces
have advantages and disadvantages. Future versions of Rigi
should include the ability to seamlesdy switch between the
two interfaces when reverse engineering a software system.

6 Conclusions

This paper describes the design of an experiment for
evaluating two contrasting interfaces in a reverse engineer-
ing tool. The experiment design has been refined through
its applicationin apilot study held at the University of Vic-
toria and Simon Fraser University, using 12 users. This
experiment will be implemented with a larger number of
usersat the University of Victoriaand Simon Fraser Univer-
sity in Spring 1997. The user group for this larger experi-
ment will include professionals from industry. In the mean-
time, smaller experimentswill be performed to test individ-
ual components of the reimplementation of the SHriMP in-
terface. In the future, we would aso like to perform exper-
iments using larger software examples and to evaluate not
only how software engineers browse software hierarchies,
but also how they make use of these tools for creating soft-
ware hierarchies when documenting or reverse engineering
asoftware system. We look forward to analyzing the results
from these future experiments.!

LFor more information, please email: mstorey@csr.uvic.ca.

Acknowledgments

Thiswork was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the Univer-
sity of Victoria, and Simon Fraser University. The authors
thank Jim McDaniel and the anonymousreviewersfor their
helpful comments.

References

[1] S.R. Tilley, K. Wong, M.-A.D. Storey, and H.A. Mller. Pro-
grammabl e reverse engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering, 4(4), Decem-
ber 1994.

[2] K. Wong, SR. Tilley, HA. Miller, and M.-A.D. Storey.
Structural redocumentation: A case study. |EEE Software,
12(1):46-54, January 1995.

[3] M.-A.D. Storey and H.A. Muller. Manipul ating and document-
ing software structures using shrimp views. Proceedings of
the 1995 International Conference on Software Maintenance
(ICSM '95), Opio (Nice), France, October 16-20, 1995.

[4] M.-AD. Storey and H.A. Muller. Graph layout adjustment
strategies. In Proceedings of Graph Drawing 1995, (Passau,
Germany, September 20 - 22, 1995), pages 487-499. Springer
Verlag, 1995. Lecture Notesin Computer Science.

[5] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[6] G.W. Furnas. Generdized fisheye views. In Proceedings of
ACM CHI’ 86, (Boston, MA), pages 16-23, April, 1986.

[7] James R. Lewis. IBM Computer Usability Satisfaction
Questionnaires: Psychometric Evaluation and Instruction for
Use. International Journal of Human-Computer Interaction,
7(1):57-78, 1995.

[8] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. Communications of the ACM,
38(6):33-44, June 1995.

