
On Designing an Experiment to Evaluate a Reverse Engineering Tool

M.-A.D. Storeyyz K. Wongy P. Fongz D. Hooperz K. Hopkinsz H.A. Müllery

zSchool of Computing Science yDepartment of Computer Science
Simon Fraser University University of Victoria
Burnaby, BC, Canada Victoria, BC, Canada

Abstract

The Rigi reverse engineering system is designed to an-
alyze and summarize the structure of large software sys-
tems. Two contrasting approaches are available for visual-
izing software structures in the Rigi graph editor. The first
approach displays the structures through multiple, individ-
ual windows. The second approach, Simple Hierarchical
Multi-Perspective (SHriMP) views, employs fisheye views of
nested graphs. This paper describes the design of an exper-
iment to evaluate these alternative user interfaces. Various
results from a preliminary pilot study to test the experiment
design are reported.

1 Introduction

Numerous reverse-engineering tools have been devel-
oped to assist in software maintenance by providing meth-
ods to uncover the original (or existing) design of software
systems. The usability of these tools is critical to their effec-
tiveness. This paper evaluates a particular reverse engineer-
ing tool called Rigi.

The Rigi system is suitable for extracting, analyzing, and
documenting the structure of large software systems [1, 2].
The reverse engineering process involves parsing a subject
software system, resulting in a graph where nodes represent
system artifacts such as functions and datatypes, and arcs
represent dependencies among the artifacts. A hierarchy is
then imposed on the flat graph by building subsystem ab-
stractions. Software maintainers can subsequently browse
and annotate these software hierarchies to aid in program
comprehension.

Currently, there are two alternative approaches avail-
able in Rigi for browsing subsystem hierarchies [3]. The
first (original) approach displays a hierarchy using multi-
ple, overlapping windows, where each window displays a
portion of the subsystem hierarchy. A second (newer) ap-
proach, Simple Hierarchical Multi-Perspective (SHriMP)
views, employs a nested graph formalism to display a sub-

system hierarchy in a single window [4]. A zoom algo-
rithm, based on a fisheye-lens metaphor, automatically en-
larges and shrinks portions of the graph to ease browsing and
navigation in the hierarchy.

The SHriMP approach was developed in response to sev-
eral deficiencies identified with the multiple window ap-
proach. For larger systems, the hierarchy may be very deep
and many windows may need to be opened. Positioning and
resizing these windows to keep pertinent information visible
can be tedious. Since the relationships between windows are
typically implicit, it is easy to lose context and become dis-
oriented while navigating larger systems.

The SHriMP interface is implemented in the Tcl/Tk [5]
language and is currently a library that has been integrated
into the Rigi system. Although Tcl/Tk is a powerful tool for
rapid prototyping, one of its shortcomings is that the graph-
ics are very slow and not suitable for interactively browsing
large software graphs in Rigi. The designers of the Rigi sys-
tem intend to tightly couple this interface with the Rigi tool
for improved performance. Before undertaking this task, it
is wise to evaluate this interface and compare it to the exist-
ing Multiple Window interface in Rigi, to ascertain the value
and focus of a reimplementation.

This paper describes the design of an experiment to eval-
uate these two approaches. The experiment design has been
refined through its application in a pilot study. Preliminary
results from the pilot study are reported.

The two interfaces are compared to each other and also to
Unix command-line tools (vi and grep). Rigi can be used
both for creating and browsing software hierarchies. The ex-
periment presented in this paper only addresses the browsing
capabilities of Rigi. However, observations were also made
by the Rigi experts as they prepared software hierarchies for
use in the pilot study.

Before undertaking the pilot study, we expected that Rigi
would show the most significant advantage in tasks requir-
ing the user to explore dependency relationships between the
functions and data types in the program. We expected that
the SHriMP interface would provide a significant speed and
ease-of-use advantage over the standard Rigi interface when



task completion requires the exploration of heavily nested
dependency graphs. In addition, it was expected that the
SHriMP interface would alleviate the lost in space syndrome
experienced by users as they navigate deep hierarchies.

Section 2 describes the two available user interfaces for
navigating software structures in Rigi. Section 3 outlines the
experiment design and specifics of the pilot study. Section 4
presents the preliminary results of the pilot study. Section 5
interprets the pilot study results, suggests refinements which
should be made to the experiment design, and provides rec-
ommendations for changes to improve the usability of the
Rigi tool. Section 6 is the conclusion.

2 The Rigi system

Rigi is a system for extracting, analyzing, visualizing
and documenting the structure of evolving software systems.
Software structures are manipulated and explored using a
graph editor. The following two subsections describe two
alternative approaches for exploring software hierarchies in
Rigi.

2.1 Multiple window approach

In the original Rigi approach, a subsystem containment
hierarchy is presented using individual, overlapping win-
dows that each display a specific portion of the hierarchy.
For example, the user can open windows to display a partic-
ular level in the hierarchy, a specific neighborhood around a
software artifact, a projection or flattening of the hierarchy,
or the overall tree-like structure of the entire hierarchy,

Figure 1 shows the multiple window approach in Rigi for
presenting the structure of a small sample program. The pro-
gram root node, entitled src, is displayed in Fig. 1(a). A user
displays the next layer in the hierarchy by double clicking on
the src node, see Fig. 1(b). This layer consists of the main
function and two subsystems, List and Element. Arcs in this
window are called composite arcs and represent one or more
lower level dependencies in the graph.

The List subsystem has been opened in Fig. 1(c). Nodes
in this window are leaf nodes and directly correspond to
functions or datatypes in the software. Arcs in this window
represent either call or data dependencies. Figure 1(d) shows
an overview of the software hierarchy and provides context
for the other windows. Arcs in the overview window are
called level arcs as they represent the parent-child relation-
ships in the hierarchy. Finally, Fig. 1(e) shows a projection
from the src node. This operation has the effect of flattening
the hierarchy and displays all of the lower level dependen-
cies and artifacts in a single window.

2.2 SHriMP views

The SHriMP visualization technique offers an alternative
approach for navigating and manipulating subsystem hierar-
chies in Rigi. In this approach, nested graphs represent the
structure and organization of the software. The nesting fea-
ture of nodes communicates the hierarchical structure of the
software (e.g. subsystem or class hierarchies). A fisheye-
view visualization technique is used to enlarge nodes of cur-
rent interest while concurrently shrinking the remainder of
the graph. Fisheye views, an approach proposed by Furnas
in 1986 [6], provides context and detail in one view. This
display method is based on the fisheye-lens metaphor where
objects in the center of the view are magnified and objects
further from the center are reduced in size.

The same program is again used to demonstrate how this
interface may be used for visualizing software. A user trav-
els through the hierarchy by opening nodes. Nodes and arcs
representing the next layer of the hierarchy are displayed in-
side the open node, as opposed to being displayed in a sep-
arate window. In Fig. 2(a) the src node is displayed as a
large box. When this node is opened, its children are dis-
played inside the node as shown in Fig. 2(b). In Fig. 2(c)
List’s children are displayed inside the List node when it is
opened. The Element node has been opened in Fig. 2(d).
This view shows the same information as the overview win-
dow from the Multiple Window approach. The containment
feature of the nested nodes depicts the parent-child relation-
ships among nodes in the software hierarchy.

Composite arcs may be opened in the SHriMP views to
show the lower-level dependencies that the arcs represent. A
user opens a composite arc by double-clicking on it to dis-
play the lower-level arcs. In Fig. 2(e) composite arcs be-
tween the main function and the List and the Element sub-
systems have been opened. In this view, all of the lower level
dependencies and artifacts are visible.

The next section in this paper describes the design of an
experiment to evaluate these two interfaces in Rigi.

3 Experimental methods

This section describes the design of an experiment to
evaluate the usability of three user interfaces:

Command-Line: online source code and documentation,
with vi and grep Unix command-line tools;

Multi-Win: multiple window approach in Rigi;

SHriMP: SHriMP views approach in Rigi.

Each interface is tested by asking the users to complete a se-
ries of typical software maintenance tasks under controlled



(a) (b) (c)

(d) (e)

Figure 1: (a) This window contains the root node of the program, entitled src. (b) This window contains the children of
src: main, List and Element. (c) This window appears when a user opens the List node. (d) This window is an overview
window and provides context for the other windows. (e) A projection from the src node is performed to show lower level
dependencies between the subsystems.

and supervised conditions. After finishing the tasks, the
users are asked to complete a prepared questionnaire. Fi-
nally, informal interviews are conducted to stimulate the
users into revealing relevant thoughts not expressed while
answering the questionnaire.

A small pilot study was conducted at the University of
Victoria and Simon Fraser University according to the ex-
periment design. Parameters of this study to test the design
are mentioned in the relevant following subsections.

3.1 Hypothesis

Null hypothesis: Command-Line, Multi-Win, and
SHriMP are (pairwise) equally effective under the same
conditions.

3.2 Experimental variables

The independent variables in the experiment are:

� the user interface,

� complexity of the test program,

� complexity of software maintenance task, and

� level of user expertise.

The following dependent variables are assumed to be in-
fluenced:

� correctness of tasks,

� time taken to complete tasks,

� subjective user satisfaction, confidence, and productiv-
ity.



src

(a)

src
main

List

Element

(b)

src
main

listinit listid

listfirst listnext listcreate

List

listinsert list

mylistprint

Element

(c)

elementinfo

elementcreate

elementnextelementsetnext

mylistprint

listcreatelistnextlistfirst

listinsert

src

List
listinit listid

list

Element

element

main

(d)

listinsert

listnext

mylistprintlistcreate

listinit listfirst

elementsetnextelementinfo

elementnext
elementcre

src
main

Element

List

list

element

listid

(e)

Figure 2: (a) This figure shows the root node of the program, entitled src. (b) This figure shows src’s children: main, List and
Element, displayed inside src. (c) This figure shows how List’s children nodes are displayed inside List when it is opened.
(d) The Element node has also been opened to display its children showing an overview of the entire system. (e) Composite
arcs are opened to display lower level dependencies.

3.2.1 User interfaces

To effectively increase the number of users in the pilot study,
each user was assigned tasks using each of the three inter-
faces. This had the added advantage that the users can also
compare the usability of the three interfaces. For each user,
the Command-Line interface was tested first, followed by
Multi-Win, with SHriMP last. Although some bias is intro-
duced because of this fixed order, it is unavoidable unless the
group of users is large enough to allow randomizing the or-
der of the interfaces.

3.2.2 Test programs

If a single program is used throughout the experiment, then
knowledge gained by a user from examining the program
using one interface could be exploited while using a sub-

sequent interface. To prevent this, a different program is
needed for each interface tested by a user. Since each user
tests three interfaces, three different programs are required.
Some bias is introduced since the programs are necessarily
different. To offset this bias, the assignment of a program to
a user interface is randomized uniformly over all users in the
experiment.

Because of this randomization, the three programs need
not be of similar size or complexity. By selecting programs
of varying size, it is possible to examine the effect of pro-
gram size on the use of each interface.

In the pilot study, we used three programs that were sim-
ilar in complexity but differed in size.



The programs were implementations of games written in
the C language:

Fish: approx. 300 lines, one source file;

Hangman: approx. 300 lines, 12 source files;

Monopoly: approx. 1700 lines, 18 source files.

These lines of code counts do not include comments.

3.2.3 Tasks

A common series of tasks is assigned to each user. Ide-
ally, complex software maintenance tasks involving several
steps could be prepared. Due to time constraints, a trade-off
between task complexity and task completion time is nec-
essary. Instead of asking users to perform particular tasks
(such as fixing a software bug), we chose to have them per-
form small tasks that are commonly done by software main-
tainers to attain larger goals of fixing errors or adding new
features.

In the pilot study, there were two categories of tasks: ab-
stract and concrete. Abstract tasks are high-level program
understanding tasks and involve gaining an understanding
of the overall structure or design of the program. Concrete
tasks are low-level program understanding tasks and may in-
volve understanding only small portions of the test program.
Answers to the concrete tasks should be unambiguous.

Reasonable time limits on the individual tasks should be
imposed to ensure that all tasks are at least attempted. In the
pilot study, users were given 20 minutes to complete all eight
tasks, where each task had a set time limit. If a user could not
finish a task by the allotted time, we would remind the user
to leave it and move on to the next task.

3.2.4 User expertise

The level of user expertise and skill will affect an individ-
ual’s performance. Also, user familiarity with the vi and
grep tools gives an unfair advantage over the Rigi inter-
faces. However, we tried to offset this advantage by training
the users on the Rigi interfaces and by having experts pre-
pare software hierarchies of the test programs for each of the
interfaces. In the pilot study, 12 users of similar skill level
participated in the experiments. The users volunteered their
time and were unpaid. These 12 users consisted of 10 grad-
uate students and 2 senior undergraduate students from the
University of Victoria and Simon Fraser University.

Domain knowledge can give a user a head start by pro-
viding useful preconceptions. This knowledge may con-
tribute significantly to program understanding and must be
considered. For the pilot study, the first task asks whether a
user is familiar with the game implemented by the test pro-
gram.

3.3 Experimental procedure

The experimental procedure for each user is outlined in
Fig. 3. Experiments may be run in parallel but in separate
rooms. In this case, it may be best to train multiple users at
the same time. In the pilot study, each user experiment lasted
between 1.5 and 2 hours.

Online Tasks Online Questionnaire

SHriMP Tasks SHriMP Questionnaire

Rigi Tasks Rigi Questionnaire

Training

Setup 

Overall Questionnaire

Interview

Figure 3: Phases of the experiment.

3.3.1 Setup

In any experiment, properly controlled conditions are
needed to obtain results with reasonable confidence. The
experimenter’s handbook details what must be done during
each phase of the experiment. The handbook specifies
how to introduce the users to the experiment and pro-
vides instructions on setting up the workstation for each
phase. These protocols ensure that the experiment proceeds
smoothly and consistently, reducing the likelihood of
mishaps that might affect user performance.

3.3.2 Training

For each user interface, a specific training module in the ex-
perimenter’s handbook outlines the features to be used by the
users, along with demonstrations of several example tasks.

In the pilot study, we emphasized that the interfaces were
being tested, not the users. To reduce frustration due to time
constraints, we also told them that we did not expect them
to complete all the tasks, but that we were more interested
in how they attempted to solve a task using a particular in-
terface. This helped relax the users considerably, although
it appeared that they did strive to complete the tasks cor-
rectly. The training time took between 30 and 40 minutes



for each user. The user did not perform any practice tasks.
We stressed that users did not have to remember how to ac-
cess all of the features. They could ask for help during the
experiment, but not ask for assistance in completing a task.

3.3.3 Tasks

The abstract tasks used in the pilot study were:

1. Show familiarity with the game.

2. Summarize what subsystem x does.

3. Describe the purpose of artifact x.

4. On a scale of 1-5, how well was the program designed?

The concrete tasks for the pilot study were:

5. Find all artifacts on which artifact x directly or indi-
rectly depends.

6. Find all artifacts that directly or indirectly depend on ar-
tifact x.

7. Find an artifact that is not used.

8. Find an artifact that is heavily used.

3.3.4 Questionnaire

The questionnaire is designed to evaluate and compare the
usability of the interfaces through user feedback. The design
of the usability questionnaire is based on the IBM Post-Study
System Usability Questionnaire (PSSUQ) [7]. The question-
naire is presented to a user after all tasks have been com-
pleted with a given user interface.

For the pilot study, we adapted the PSSUQ slightly to ask
20 questions in 5 categories:

overall: all 20 questions evaluate overall user satisfaction;

sysuse: 8 questions evaluate interface usefulness;

interqual: 3 questions evaluate interface quality;

organization: 4 questions evaluate helpfulness of module
organizations in the interface;

confidence: 4 questions evaluate user confidence in the an-
swers generated by the interface.

Questions in a category are subtle rewordings of each other
to help stimulate responses. The ordering of all questions
were randomized.

In addition, the following questions were asked in the pi-
lot study after a user had completed testing all of the user in-
terfaces.

1. Rank the three systems in order of their perceived ef-
fectiveness at helping to understand the software.

2. Hypothetically choose a system for a future software
maintenance project.

3. Name the three most preferred features in the user in-
terfaces tested.

3.3.5 Interview

An informal interview is held at the close of each experi-
ment. The purpose here is to determine what difficulties the
users encountered in using each interface and to extract more
about their opinions of usability.

3.4 Recording observations

It is not possible to extract all the required results from
task answers and questionnaires alone. To determine ex-
pected and unexpected difficulties, experimenters need to
record observations of the users completing the task sets. For
example, a user may correctly answer a task by using an un-
orthodox method or even by pure chance. The experimenter
verifies assumptions about what the user is thinking by ask-
ing appropriate questions, taking care not to unduly inter-
rupt. After the task set has been completed and while the
user fills in the questionnaire, the experimenter also records
a summary of how the user performed.

In the pilot study, we used several methods of recording
observations:

Think aloud: The users were asked to verbalize their
thoughts as they attempted a task. This allowed the ex-
perimenter to gain a better understanding of what each
user was trying to accomplish.

Video taping: One or two video cameras recorded each of
the experiments, where one camera captured actions on
the computer screen and the other captured the user’s
facial expressions and verbal comments.

Experimenter comments: Most of the experiments had
two experimenters present. One experimenter inter-
acted with the user while the other served as a silent ob-
server.

3.5 Analyzing the results

To maintain consistency while assessing the correctness
of the tasks, experimenters make use of prepared answer
keys. The assessment of answers to the abstract tasks are
somewhat subjective.

In the pilot study, for the task results, we looked for non-
normality of the samples, performed an ANOVA with the



Scheffé method, and computed two-sample t tests, where
possible, to determine instances where the null hypothesis
could be rejected.

4 Pilot study results

The purpose of the pilot study was to evaluate the exper-
iment rather than the interfaces. Nevertheless some interest-
ing results were observed that could serve as interesting hy-
potheses for the next experiment. This subsection describes
the results from the pilot study.

4.1 Task results

The tasks were judged using a prepared answer key. Due
to the small sample size, tasks 1 and 4 were not included in
the analysis. (Task 1 determined the user’s domain knowl-
edge of the game and task 4 enquired about the user’s men-
tal model of the program.) The results of the other tasks
appear in Table 1. There were some findings where the
null hypothesis was rejected (one interface found less effec-
tive or worse than another). For concrete tasks on the large
Monopoly program, Command-Line was worse than Multi-
Win (P = 0.01) and Command-Line was worse than SHriMP
(P = 0.0005). For concrete tasks on the very small Fish pro-
gram, Command-Line was worse than SHriMP (P = 0.05)
and Multi-Win was worse than SHriMP (P = 0.005), with
Command-Line tending to be somewhat better than Multi-
Win (P = 0.1).

4.2 Questionnaire results

Preliminary results seem to suggest that the users were
more satisfied with SHriMP than Multi-Win, and more sat-
isfied with Multi-Win than Command-Line. A different pic-
ture emerges, however, when the results are divided ac-
cording to the three test programs (see Fig. 4). Looking at
the “overall” questionnaire category, user satisfaction with
SHriMP is lower than Multi-Win for the Monopoly test pro-
gram. The same pattern holds for the other questionnaire cat-
egories.

When asked to hypothetically choose a user inter-
face for their next software maintenance project, 8 users
chose SHriMP, 3 chose Multi-Win, and only 1 user chose
Command-Line.

4.3 Observations

This subsection describes observations made for each of
the three interfaces. The quotes relating to each of the inter-
faces were made by users during the experiments.

4.3.1 Command-Line

“If I knew the structure of the program maybe I
could guess what is called frequently.”

For the most part, the users were able to effectively utilize
the vi and grep tools, due to previous programming expe-
rience with these tools. For those with extensive program-
ming experience, their performance with this interface was
quite successful.

Some of the tasks may have been unrealistic for the
Command-Line tools and may have been biased towards
the Multi-Win and SHriMP interfaces. For example, a task
which asks to name all functions called directly or indirectly
by another function is a much easier task for the Rigi tool.
More experienced users often used heuristics, or “guesses”
to try to answer these types of tasks. When a user had an un-
derstanding of how the games are played, they would use this
knowledge to answer the question. Other users went about
these tasks in an ad hoc manner, and quickly gave up. Only
a few attempted to thoroughly and accurately complete the
tasks.

4.3.2 Multi-Win

“It would be necessary to get more familiar with
Rigi [Multi-Win] in order to properly judge it.”

In general, many of the users seemed quite pleased with the
graphical representation of the software. However, some
problems were often observed. Most of the users had diffi-
culties understanding the purpose of the overview window.
Arcs in this window show the parent-child relationships of
subsystems, but these arcs were often confused with call or
data dependency relationships that are shown in the general
windows.

In addition, many users did not at first remember that a
composite arc represents one or more lower-level arcs. In-
deed, they had to be reminded that the projection feature in
Multi-Win should be used to view the lower-level dependen-
cies. Some had to be reminded of this more than once.

The training time for Multi-Win was too short. This was
obvious since the users were initially unsure how to solve the
first few tasks using Multi-Win. They did improve their per-
formance during the experiment, but they still had to ask for
help with the interface.

Also, users often opened windows that were already dis-
played. This increased the user’s cognitive load as they
scanned the windows trying to identify pertinent artifacts.

4.3.3 SHriMP

“When you gave the tutorial ... I thought that
SHriMP would be the worst ... but it turned out
that it was easier.”



Table 1: Task Results

User Interface Test Program Task Type Mean Std Dev Variance
Command-Line Fish Abstract 0.72 0.36 0.13

Concrete 0.75 0.38 0.14
Hangman Abstract 0.83 0.30 0.09

Concrete 0.56 0.44 0.19
Monopoly Abstract 0.47 0.47 0.22

Concrete 0.52 0.45 0.20
Multi-Win Fish Abstract 0.84 0.23 0.05

Concrete 0.55 0.42 0.18
Hangman Abstract 0.65 0.43 0.18

Concrete 0.68 0.47 0.22
Monopoly Abstract 0.60 0.42 0.18

Concrete 1.00 0.00 0.00
SHriMP Fish Abstract 0.88 0.31 0.09

Concrete 0.96 0.10 0.01
Hangman Abstract 0.88 0.23 0.05

Concrete 0.79 0.40 0.16
Monopoly Abstract 0.75 0.35 0.13

Concrete 0.95 0.15 0.02

The SHriMP interface appeared to be quite intuitive. The
users liked being able to see all of the nodes in one win-
dow because they could better see how everything was con-
nected. In particular, opening composite arcs seemed in-
tuitive. However, we did observe some users would only
open composite arcs connected to the immediate parent node
when trying to view lower-level dependencies connected to a
particular node. They would often overlook composite arcs
which were connected to higher levels of subsystem abstrac-
tions.

Displaying everything in one window did lead to some
complaints. Users had difficulties in determining the nodes
that an arc connected. This happened especially when sev-
eral composite arcs were opened to show many lower-level
arcs. Most users dealt with this complexity by moving irrel-
evant nodes to one side to give a clearer view of the arcs of
interest.

Tcl/Tk was useful for rapid prototyping of the SHriMP
interface. However, the responsiveness of the resulting in-
terface was poor for large graphs. Operations to move and
scale nodes were particularly tedious. Many users quickly
realized this and gave up trying to move or scale nodes in
larger graphs.

5 Discussion

In this section, we discuss the results from the pilot
study experiment. These include an interpretation of the
tasks and questionnaires, suggested refinements to the exper-
iment, and recommendations for changes to the Multi-Win
and SHriMP interfaces.

5.1 Interpretation of results

From the task results (which measure the effectiveness of
the systems), there was a slight tendency for Multi-Win to
outperform Command-Line and for SHriMP to outperform
Multi-Win. However, this may be due to the bias of fixing
the order of the interfaces for each user. The users probably
gained knowledge on how to tackle the tasks using the first
two interfaces even though test programs differed.

Based on the concrete task results, the users seemed
to use Command-Line more effectively than Multi-Win for
smaller programs. This contrasts with the questionnaire re-
sults which suggest that the users preferred Multi-Win even
for the smaller test programs. This confirms other experi-
ments that compared graphical and textual representations
of software. In those experiments, user performance did
not improve with graphical representations, even though the
users perceived them as more effective [8].

The questionnaires ranked the Multi-Win interface over
the SHriMP interface for the larger Monopoly program. This



Fish Hangman Monopoly

Command-Line

Multi-Win

SHriMP

Test Program

U
sa

bi
lit

y 
Sc

or
e

Better

Worse

Figure 4: This chart shows the usability scores for the overall questionnaire category.

suggests that user satisfaction might be sensitive to the pro-
gram size; users are less satisfied with SHriMP when they
are dealing with a large program. Two plausible explana-
tions are: (1) responsiveness of the SHriMP interface was
slow; (2) too many arcs cluttered the SHriMP window.

5.2 Refinements

In conducting the pilot study, several minor difficulties
and a few major problems with our initial experiment design
were uncovered.

We performed a dry run of the experiment using an ex-
perienced Rigi user. This early test identified major prob-
lems which were remedied for the pilot study. Admittedly,
we did not have the foresight to develop an experimenter’s
handbook. The necessity of such a document was realized
immediately upon running this test. We also realized that
the original prescribed tasks were not simple enough to be
completed in the time allotted. Some tasks were removed.
The final task set used in the pilot study was described in
Sec. 3.3.3.

To support a useful statistical analysis, more users, more
tasks, task timings, and tighter controls over the running of
the experiment are needed.

A concern with the current experiment design is that
users can learn from performing tasks with preceding inter-
faces, influencing their performance with subsequent inter-
faces. Given enough users, future experiments must either
randomize the order of the user interfaces or normally dis-
tribute the users into three groups where each group tests
only one interface.

A longer experiment time would help since the training
phase was too short for users to learn how to use all three
interfaces effectively. Practice tasks should be a part of the
user training.

All users had difficulty overcoming idiosyncrasies in the
Multi-Win and SHriMP interfaces, due to the prototypical
nature of both interfaces. These problems are discussed in
the next subsection.

5.3 Recommendations

Based on observations and user comments, several im-
provements to the Multi-Win and SHriMP interfaces are rec-
ommended.

In Multi-Win, users often forgot (or never discovered)
the context of individual windows. They often opened sev-
eral windows of the same view, failing to recognize that
these views were already available. Some way of emphasiz-
ing the relationship of the open windows to the correspond-
ing composite nodes is needed.

There was also confusion between the interpretation of
the general windows and the hierarchy overview. Some
users misinterpreted the parent-child relationships in the
overview as call or data dependencies. The appearance of
the overview window should differ from the general win-
dows. This might be achieved by simply having different
background colors for the different window types.

The single most important problem with SHriMP views
was the slow response of the interface. Since SHriMP views
are based on direct manipulation, users expecting immedi-
acy were disturbed by the slow response. This must be ad-



dressed in a future reimplementation of the SHriMP inter-
face in Rigi.

Another problem with SHriMP was that it is possible to
become intimidated by the large number of arcs revealed by
opening several composite arcs. Methods to make it easier
to identify arcs of interest and filter uninteresting arcs are re-
quired.

For the experiments, four Rigi experts created software
hierarchies for each of the three programs. One set of hier-
archies was then selected to be used in the pilot study. For
the smaller programs, it took around 30 minutes to create a
software hierarchy, and around 45 minutes for the Monopoly
software hierarchy. These experts made use of both inter-
faces, but were particularly satisfied with the ability to see
multiple levels of abstraction concurrently in the SHriMP
views. The SHriMP interface was deemed more desirable
for the drag and drop paradigm of adding nodes to subsys-
tem abstractions.

In general, both the Multi-Win and SHriMP interfaces
have advantages and disadvantages. Future versions of Rigi
should include the ability to seamlessly switch between the
two interfaces when reverse engineering a software system.

6 Conclusions

This paper describes the design of an experiment for
evaluating two contrasting interfaces in a reverse engineer-
ing tool. The experiment design has been refined through
its application in a pilot study held at the University of Vic-
toria and Simon Fraser University, using 12 users. This
experiment will be implemented with a larger number of
users at the University of Victoria and Simon Fraser Univer-
sity in Spring 1997. The user group for this larger experi-
ment will include professionals from industry. In the mean-
time, smaller experiments will be performed to test individ-
ual components of the reimplementation of the SHriMP in-
terface. In the future, we would also like to perform exper-
iments using larger software examples and to evaluate not
only how software engineers browse software hierarchies,
but also how they make use of these tools for creating soft-
ware hierarchies when documenting or reverse engineering
a software system. We look forward to analyzing the results
from these future experiments.1

1For more information, please email: mstorey@csr.uvic.ca.

Acknowledgments

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the Univer-
sity of Victoria, and Simon Fraser University. The authors
thank Jim McDaniel and the anonymous reviewers for their
helpful comments.

References

[1] S.R. Tilley, K. Wong, M.-A.D. Storey, and H.A. Müller. Pro-
grammable reverse engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering, 4(4), Decem-
ber 1994.

[2] K. Wong, S.R. Tilley, H.A. Müller, and M.-A.D. Storey.
Structural redocumentation: A case study. IEEE Software,
12(1):46–54, January 1995.

[3] M.-A.D. Storey and H.A. Müller. Manipulating and document-
ing software structures using shrimp views. Proceedings of
the 1995 International Conference on Software Maintenance
(ICSM ’95), Opio (Nice), France, October 16-20, 1995.

[4] M.-A.D. Storey and H.A. Müller. Graph layout adjustment
strategies. In Proceedings of Graph Drawing 1995, (Passau,
Germany, September 20 - 22, 1995), pages 487–499. Springer
Verlag, 1995. Lecture Notes in Computer Science.

[5] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[6] G.W. Furnas. Generalized fisheye views. In Proceedings of
ACM CHI’86, (Boston, MA), pages 16–23, April, 1986.

[7] James R. Lewis. IBM Computer Usability Satisfaction
Questionnaires: Psychometric Evaluation and Instruction for
Use. International Journal of Human-Computer Interaction,
7(1):57–78, 1995.

[8] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. Communications of the ACM,
38(6):33–44, June 1995.


