
MANIPULATING AND DOCUMENTING

SOFTWARE STRUCTURES

Margaret-Anne D. Storey

School of Computing Science,

Simon Fraser University,

Burnaby BC, Canada V5A 1S6

mstorey@cs.sfu.ca

Hausi A. M�uller, Kenny Wong

Department of Computer Science,

University of Victoria,

Victoria BC, Canada V8W 3P6

fhausi,kenwg@csr.uvic.ca

An e�ective approach to program understanding involves browsing, exploring, and

creating views that document software structures at multiple levels of abstraction.

While exploring the many relationships in a multi-million line legacy software

system, one can easily lose context. One approach to alleviate this problem is to

visualize these structures using �sheye-view techniques. This chapter introduces

Simple Hierarchical Multi-Perspective (SHriMP) views. The SHriMP visualization

technique has been incorporated into the Rigi reverse engineering system, greatly

enhancing its capabilities for documenting software abstractions. The applicability

and usefulness of SHriMP views are illustrated with selected software visualization

tasks.

1 Introduction

\Clutter and confusion are failures of design, not attributes of information."

Edward R. Tufte, Envisioning Information.1

The term software visualization is used to describe many di�erent pro-

cesses. According to the taxonomy of software visualization by Price et al.,2

this term has been used to describe broad research areas such as algorithm visu-

alization, program visualization, and visual programming. To visually present

software artifacts and structure, graphs are particularly suitable. Nodes in

the graph typically represent system components, and directed arcs represent

dependencies among those components. Nevertheless, as the size of software

systems increase, so too do their representations as graphs. Advanced graph-

ics and abstraction techniques are needed to manage the visual complexity of

these large graphs.

The Rigi 3 reverse engineering system is designed to extract, navigate, an-

1



alyze, and document the static structure of large software systems (to aid soft-

ware maintenance and reengineering activities). Software structure refers to a

collection of artifacts that software engineers use to form mental models when

designing or understanding software systems. Artifacts include software com-

ponents such as subsystems, procedures, and interfaces; dependencies among

components such as containment, function call, and data access; and attributes

such as component type and source-code location.

While exploring the many relationships in a multi-million line system, one

can easily lose context. Visualization techniques developed for browsing large

information spaces in other �elds can be applied to the problem of under-

standing large software systems. The Simple Hierarchical Multi-Perspective

(SHriMP) visualization technique presents software structures using �sheye

views of nested (inclusion) graphs. This technique provides a mechanism for

presenting detail of a large information space while also displaying contextual

cues at the same time. The technique has been incorporated into the Rigi re-

verse engineering system. This chapter describes software visualization using

the SHriMP technique and outlines the bene�ts of applying this technique for

understanding large software systems.

Section 2 describes the Rigi reverse engineering system. An overview of

the SHriMP technique appears in Section 3. Section 4 illustrates how SHriMP

views are used for visualizing software structures. Section 5 discusses the

applicability and usefulness of SHriMP views when reverse engineering large

software systems. Section 6 draws some conclusions.

2 The Rigi System

Rigi is a reverse engineering system developed to extract, navigate, analyze,

and document the structure of evolving software systems. The Rigi system is

centered around a language-independent graph editor for presenting software

artifacts. The �rst phase of reverse engineering a subject software system is

fully automatic and involves parsing the software and storing the extracted

artifacts. Rigi has parsers for several imperative languages, including C and

COBOL. This �rst phase results in a at resource-ow graph which can be

manipulated using the Rigi editor.

The next phase is semi-automatic, where the objective for the reverse en-

gineer is to obtain a mental model of the structure of the software system and

then build abstractions on the at graph to capture this model. To manage

the complexity of large software systems, the second phase involves pattern-

recognition skills and features subsystem-composition techniques to generate

multiple, layered hierarchies of higher-level abstractions.4 In this discovery

2



Figure 1: Three graph layouts of the same COBOL program. The left window displays a

Sugiyama layout, the top-right window shows a tree layout, and the bottom-right window

displays a spring layout.

phase, the reverse engineer employs various visualization aids to recognize

patterns, identify candidate subsystems, and understand software structures

in the graph. This discovery phase can be partially automated, but the per-

ceptual abilities and domain knowledge of the reverse engineer play a central

role.

Various visualization tools are available in the Rigi editor to aid the reverse

engineer in discovering and documenting system design information. Some of

these tools include selection algorithms, �ltering (elision) algorithms, software

metrics, and graph layout algorithms.5;6 For example, in Fig. 1, the resource-

ow graph of a small COBOL example is displayed using three graph layouts:

spring,7 Sugiyama,8 and a tree layout.9 These three layouts present three dif-

ferent views of the software structure. A single set of nodes is selected (high-

lighted) in each of the graphs. Note that these nodes are placed close to one

another (forming a cluster) in both the Sugiyama and spring layouts. This

kind of visual information gives strong evidence to the reverse engineer that

such a cluster is a good candidate for a subsystem abstraction.

In addition, the Rigi editor supports editing, manipulation, annotation,

hypertext, and exploration capabilities on the graph. The subsystem hierar-

chies are presented using multiple windows, with overview windows to provide

an overall perspective. A user navigates in the hierarchy by opening a window

to show the next layer in the hierarchy. An overview window provides context

3



for the individual windows. Figure 2 shows how the hierarchy of a small C

program can be visualized and navigated using the Rigi editor.

Rigi is a sophisticated tool for visualizing software structures. Neverthe-

less, more e�ective methods are required for visualizing software structures in

large legacy systems. While browsing graphs consisting of thousands of nodes

and arcs, the user needs to inspect smaller groups of nodes and arcs in more

detail. For these larger software systems, it is preferable to obtain an under-

standing of the overall, high-level structure of the software before proceeding

to lower-level details.10 Ideally, the user should be able to focus on parts of the

system without losing sight of the whole. When trying to understand smaller

substructures, it is desirable to retain sight of the overall structure and to see

how an artifact of interest relates to the rest of the software.

Rigi is end-user programmable through the Rigi Command Language (RCL),6

which is based on the Tcl/Tk scripting language.11 As a result, extending the

Rigi editor with new visualization techniques, such as SHriMP, is feasible. The

SHriMP technique is described in the next section.

3 SHriMP Views

The SHriMP visualization technique uses a nested-graph formalism and a

�sheye-view algorithm for manipulating large graphs while providing context

and preserving constraints such as orthogonality and proximity. The next four

subsections provide some background on nested graphs, dealing with large

graphs, �sheye views, and preserving mental maps. Following this material is

a brief description of the underlying SHriMP �sheye-view algorithm.

3.1 Nested Graphs

David Harel introduced the concept of a higraph in 1988, a form of nested

graph.12 Nested graphs, in addition to nodes and arcs, contain composite nodes

that are used to denote set inclusion. The containment or nesting of composite

nodes conveys the parent-child relationships in a hierarchy. Figure 3(a) shows

a hierarchy that is displayed as a nested graph in Fig. 3(b).

3.2 Dealing with Large Graphs

Visualizing large information spaces is a focus for current research. These

information spaces are often represented using large graphs. Since displaying

and manipulating large graphs on a small screen is di�cult, various approaches

have been proposed for dealing with large graphs.

4



(a) (b)

(c) (d)

Figure 2: (a) This window contains the root node of the program, entitled src. A user

may open this node by double clicking on it. (b) This newly opened window contains the

children of src: main, List and Element. Arcs in this window are called composite arcs since

they relate composite (subsystem) nodes. (c) This window is created when a user opens

the List node. The presented nodes are called leaf nodes since they have no children. Arcs

in this window represent call and data dependencies in the program. (d) This window is

an overview window and provides context for the other windows. It shows the subsystem

hierarchy and structure of the program. Arcs between levels in this overview window depict

the parent-child relationships among nodes.

5



A

B C

D E F G

(a)

A
B

C

D

E F

G

(b)

Figure 3: (a) A tree view of a hierarchy. (b) A nested graph view of the same hierarchy.

One approach partitions the graph into pieces, and then displays one piece

at a time in separate windows. This multiple window approach loses surround-

ing contextual cues as the focus narrows toward the details. This was the

original approach taken by Rigi (see Fig. 2).13 A second, alternative approach

reduces the scale of the entire graph drawing when narrowing the focus, thereby

preserving context, but the details become smaller and more di�cult to see. In

a third approach, a combination view can provide context in one window and

detail in another, but this requires that the user mentally integrate the two|

not always an easy task. Various techniques have been developed to view and

navigate detailed information while providing the user with important contex-

tual cues.14 The �sheye-view paradigm is one way for accommodating the need

to see detail yet maintain contextual cues.

3.3 Fisheye Views

Fisheye views, proposed by Furnas in 1986,15 provide context and detail in one

view. This display method is based on the �sheye-lens metaphor where objects

in the center of the view are magni�ed and objects further from the center

are reduced in size. In Furnas' formulation, each object in the con�guration

is assigned a priority that is calculated using a degree-of-interest function.

Objects with a priority below a certain threshold are �ltered from the view.

To deemphasize information of lesser interest, several variations on this

theme have been developed that use size, position, and color in addition to

�ltering. For example, SemNet uses a three-dimensional point perspective to

display nearby objects larger than distant objects.16 Sarkar and Brown de-

veloped a �sheye-view technique that magni�es points of greater interest and

correspondingly reduces points of lesser interest by distorting the space sur-

rounding the focal point.17 A survey of these approaches and others such as

6



treemaps,18 perspective walls, and cone trees are described by Noik.19 Related

methods include 3DPS 20 and CATGraph.21

For visualizations of certain information spaces, however, there is no no-

tion of geometric distance. Nodes that are close to the focal point, are no more

important than nodes far away. For these applications, it may be better to

uniformly reduce the rest of the graph to allow selected regions to increase in

size. Although this approach does not strictly follow the �sheye-lens metaphor,

it does avoid the problem of causing too much distortion in certain areas of the

graph. The continuous zoom algorithm,22 the biform technique,23 the rubber

sheet orthogonal method,24 and the bifocal technique 25 uniformly distort the

space surrounding the focal points. The �rst three of these approaches have

also been applied to nested graphs. The problem with these techniques, how-

ever, is that they are either di�cult to implement or their distortion techniques

cannot be easily altered to suit di�erent kinds of graph layouts.

3.4 Preserving the Mental Map

Misue et al.26 describe three properties which should be maintained in adjusted

layouts to preserve the user's mental map: orthogonal ordering, proximity and

topology. The orthogonal ordering between nodes is preserved if the horizontal

and vertical ordering of nodes is maintained. Proximity is preserved by keeping

nodes close in the distorted view if they were close in the original view. The

topology is preserved if the distorted view of the graph is a homeomorphism

of the original view.

It is impossible to distort a graph without violating one or more of the

properties described above. The kind of graph layout and its use should be

considered when deciding which properties to preserve. This is particularly

important in software visualization where various kinds of graph layouts are

used to convey information about di�erent aspects of the software. For in-

stance, in a grid or tree layout, orthogonal ordering of nodes is important to

preserve. For other layouts, such as a spring layout to show clusters of highly

connected nodes, the proximity relationship among nodes is a more important

property.

Graph layouts composed from a combination of layout strategies 27 may

also be used to visualize software. For example, the overall structure of the

software may be tree-like, with subgraphs laid out in clusters to indicate higher

module cohesion. When zooming a node in any part of a graph, the overall

layout as well as the subgraph layouts should be maintained.

The �sheye-view algorithm underlying the SHriMP visualization technique

is exible at preserving orthogonality or proximity properties of the graph

7



(a) (b) (c)

Figure 4: (a) The graph before any scaling is done. A grid of nine nodes is displayed inside

a larger box representing the screen. (b) The node of interest (center node) grows by the

desired scale factor and pushes its siblings outward, as if there is in�nite screen space. (c)

Finally, the node and its siblings are scaled to �t inside the screen. This last step is the only

step visible to the user of SHriMP, the previous step is shown only to describe the algorithm.

layout. For a grid layout, nodes that are parallel remain parallel in the distorted

view. In other layouts, however, where node adjacencies are important, the

proximity relationship among nodes is maintained. Tree layouts can also be

preserved using a variant of this algorithm.

3.5 The SHriMP Fisheye-View Algorithm

The SHriMP �sheye-view algorithm provides an automatic way to uniformly

resize nodes to manage the screen space available.a The layout adjustment

algorithm for SHriMP �sheye views is elegant in its simplicity.28 Nodes in the

graph uniformly yield screen space to allow the focal node to grow. The focal

node grows by pushing its sibling nodes outward so that the node's resized

edges maintain some required geometric property with its siblings. Finally,

the focal node and its siblings are scaled to �t in the allotted screen space (see

Fig. 4). In a nested graph, a node also pushes the boundaries of its parent

node outward. The parent in turn pushes its siblings outward in a propagating

e�ect. Finally, all nodes are scaled to �t the screen.

A node grows (shrinks) by pushing (pulling) its sibling nodes outward

(inward) along translation vectors. These vectors determine how the sibling

nodes are repositioned when a node requires more space. Three methods for

setting the magnitude and direction of the vectors are described by Storey and

M�uller.28 One layout strategy preserves orthogonal relationships among nodes;

aSHriMP was motivated in part by the IGI continuous zoom project at Simon Fraser

University.

8



SLxcomp

(a)

SLxcomp

(b)

SLxcomp

(c)

SLxcomp

(d)

Figure 5: (a) Grid before any scaling is done. (b) The center node is scaled using a layout

strategy that preserves orthogonality in the graph. (c) and (d) The center node is scaled

using layout strategies that preserve proximity in the graph.

two other strategies, preserve proximity relationships. These three strategies

have been used to enlarge the center node of a grid layout in Fig. 5.

The mental map of combination graph layouts can be preserved by apply-

ing hybrid strategies. For example, in a tree layout, it is desirable to preserve

the orthogonal relationships between levels in the hierarchy, yet keep children

close to their parent. Hybrid strategies are straightforward since the method

of calculating translation vectors need not be the same for all sibling nodes.

In addition, multiple focal points of di�ering scale factors are also supported.

This exibility is particularly important when presenting software struc-

tures. The next section describes how the SHriMP visualization technique has

been incorporated into Rigi to help users at visualizing software structures.

4 Visualizing Software Structures using SHriMP Views

This section describes how the SHriMP visualization technique can be used

in the Rigi system. The following provides some examples where the SHriMP

technique is used to visualize software graphs created by Rigi. The usefulness

of this approach is demonstrated through a variety of software visualization

tasks.

4.1 Nested Graphs and Software Hierarchies

In the SHriMP visualization technique, nested graphs are used to present

software structures. The nesting of nodes represents the hierarchical structure

of the software (e.g., subsystem containment). A small C program, which

implements a linked list, is used to demonstrate the SHriMP technique for

navigating software hierarchies.

9



src

(a)

src

main

element

list

(b)

src

element

main

list
listinsertlistinit

listid

listfirst listnext listcreate

list

mylistprint

(c)

listinit listinsertmylistprint

listfirst listcreatelistnext

elementcreate
elementnext

elementsetnextelementinfo

src

list

element

element

main

listid list

(d)

Figure 6: (a) The root node of the program is entitled src. A user may open this parent

node to see its children by double clicking on it. (b) The children of src: main, list and

element, are displayed within src. (c) The children of list are displayed within list when it is

opened. A composite arc between main and list has also been expanded to display lower-level

dependencies. (d) The element node has also been opened to display its children. This view

now serves a similar function to the Rigi overview window previously shown. The nesting of

nodes shows parent-child relationships.

10



The software hierarchy illustrated in Fig. 6 is equivalent to the hierarchy

in Fig. 2. In the SHriMP technique, a user descends through the hierarchy by

opening nodes. Nodes and arcs representing the next layer of the hierarchy are

displayed inside the opened node, as opposed to being displayed in a separate

window. In Fig. 6(a), the src node is displayed as a large box. A user opens

this node by double clicking on it. This causes the children of the src node to

be displayed inside the src node, as shown in Fig. 6(b). Similarly, in Fig. 6(c),

the children of list are displayed inside the list node when it is opened by the

user. By opening the element node, Fig. 6(d) shows the same information as

the overview window of Fig. 2(d).

In Fig. 6(c), a composite arc, which is similar in functionality to a com-

posite node, has been opened to display the lower-level dependencies between

the main and list subsystems. This feature provides details on the particular

functions that main calls within the list subsystem.

A leaf node in the hierarchy corresponds to a software artifact extracted

by the parser. Using Rigi, a user can select a leaf node and display the �le

containing the artifact's corresponding source code in a separate text editor.

With the SHriMP technique, however, the source code may be displayed di-

rectly inside the node. Only the relevant section of source code corresponding

to the artifact is displayed inside the node, as opposed to displaying the entire

�le. Figure 7 shows a SHriMP view of the sample program, where three leaf

nodes have been opened to display their representative source code.

4.2 Fisheye Views of Software Structures

Figure 8 shows some views of a graphics program consisting of about thirty

modules. This program was written in C using a design based on abstract data

types. Figure 8(a) shows a grid layout of the initial, at graph of artifacts and

dependencies extracted by the Rigi C parser. A spring layout algorithm has

been applied to the graph in Fig. 8(b). This algorithm places highly connected

nodes closer together. The complex area in the center of the graph has been

magni�ed using the SHriMP �sheye-view algorithm in Fig. 8(c). The magni-

�cation reveals that a single node is causing much of the visual complexity.

This node represents an error printing routine that is called by many func-

tions. Since an error routine does not provide very much information when

trying to understand the structure of the system, the user may choose to hide

this node to reduce the complexity of this region. This node has been �ltered

in Fig. 8(d).

These examples serve to show how SHriMP views can be applied to visu-

alizing software in Rigi. The next section discusses how the SHriMP technique

11



Figure 7: The relevant source code for software artifacts represented by leaf nodes is displayed

directly inside the nodes in a SHriMP View. This allows the user to browse source code while

simultaneously visualizing the location of the code in the software hierarchy.

12



BaseSystem

(a)

PolygonPrint

SphereInt

ReadColor

PlaneClipPoint

PrintUsage

SLInit

SLtrace

Screen

QuadCreate

Quadric

IsectMerge

Visible

SLplasticPrint

SLmattePrint

quickcos

Plane

blip

PlaneInitialize

PlaneListInit

grand

PolygonExtents

SLmatteInit

VoxelSubdivision

itimerval

Isect

SLfaceforward

PlaneTransform

ReadPolygon

VoxelFreeAll

SLdiffuse

SphereNorm

slmatte.c_unnamed0

BitCode

PolygonCreate

IsectCopy

SLShaderShader

QuadExtents

slmirror.c_unnamed0

SLmatteDebugPrint

ReadSphere

InitTime

SLspecular

PlaneListFree

SLmetalPrint

CheckExtentPoint

SphereExtents

PlaneInitError

debugoff

SLmirrorShade

SLnormalize

CommandParse

Voxel

ReadFile

SphereData

rusage

ReadAttributes

ReadLight

SLnoise_float

IsectAdd

Trace

NextVoxel

slmetal.c_unnamed0

PlaneListClose

sltable.c_unnamed0

SphereCreate

PlaneListAdd

ComputeIntersection

SLmetalInit

Procs

ShadeBackground

SLBindShader

MatrixCopy

PlaneListTransform

SLmetalDebugPrint

SphereStats

MatrixMult

SLmetalShade

SLPrintShaders

Shadow

Ray

SLplasticInit

TracePixel

VoxelPrint

QuadInt

PolygonFree
freetree

Display

Polygon

SLgraniteInit

MatrixDump

SubdivideVoxel

InitScene

PlaneCreateWithPointsPlaneListGet

SphereTouchVoxel

Shader

SLmirrorDebugPrint

SLInitNoise

PrintStats

SphereTransform

SLphong

SampleRay

SLnoise12

SLmax

SpherePrint

ReadQuadric PlaneListGetNum

Light

QuadNorm

PolygonVoxel

SLBindNull

PolygonData

slgranite.c_unnamed0

SLabs

GetType

SLnoise13

GetSurface

main

Prim

MatrixInvert

PolygonStats

ReadView

rand1

PolygonInt

SphereVoxel

PlaneListSet

SLClose

SLgranitePrint

InitError

ReadBackground

SLShaderConstructor

ReadOpacity

ObjectFreeAll

GFXIsect.h_unnamed0

rayerror

SLShaderName

SetPixelAngle

Sphere

QuadTransform

SLShaderPrint

SLplasticDebugPrint

Camera

SLplasticShade

ReadAmbient

QuadData

InitDefaults

PlaneListClipPoint
MatrixTransform

slplastic.c_unnamed0

SLmirrorPrint

EdgeVoxel

VoxelTrace

MatrixTransformVector

ReadDisplay

compute_normal

SLreflect

timeval

MatrixTranspose

PolygonNorm

Surf

Shade

SLambient

PolygonTransform

QuadPrint

quickinvcos

SLmatteShade

ClipPolygon2Plane

ComputeRayT

SLnoise11

rnd

SLgraniteShade

SLNumShaders

VoxelGetWorld

MatrixInit

FindVoxel

SLgraniteDebugPrint

SLmirrorInit

SLilluminance

QuadStats

BaseSystem

(b)

BaseSystem

(c)

BaseSystem

(d)

Figure 8: (a) A grid layout of a graphics program written in C. (b) A spring layout of the

same graph. (c) The complex area in the center of the graph is magni�ed using the SHriMP

algorithm, exposing a heavily used node. (d) The identi�ed busy node is �ltered to reduce

the visual complexity.

13



is helpful for visualizing large legacy software systems, while summarizing the

various advantages and disadvantages of this technique.

5 Results

This section discusses the advantages and disadvantages of using the SHriMP

visualization technique for manipulating and documenting software structures.

5.1 Detail in Context

For larger software systems, understanding the structural aspects of a system's

architecture is initially more important than understanding any single compo-

nent. The nested graph formalism is particularly suitable for showing several

levels of abstraction in a system's architecture at the same time. A single

SHriMP view allows the user to focus on smaller details of the software within

an overall perspective of the high-level software structure. The user incremen-

tally exposes the structure of the software by opening subsystems of current

interest and presenting the children nodes within their parent. This is an im-

provement over a multiple window approach as the user need not mentally

synthesize a mental model from information in di�erent windows.

In addition, the SHriMP technique can present dependencies between sub-

systems at various levels of abstraction by opening composite arcs to reveal

their constituent, lower-level dependencies. Figure 9 shows the structure of a

small C program that implements a game. In Fig. 9(a), a high-level view of the

major subsystems in this program is shown. One of these subsystems is opened

in Fig. 9(b). In Fig. 9(c), further subsystems are opened to show more detail

about the program structure. Composite arcs are used to elide details about

the lower-level dependencies between the subsystems. In Fig. 9(d), composite

arcs have been opened to show lower-level dependencies in the program.

Opening composite arcs provides �ne-grained details of the dependencies

in the system while the nesting of subsystem nodes concurrently shows a high-

level view of the program's overall structure. For larger programs, however,

opening many composite arcs can quickly complicate the view. Deciding what

to display (or elide) is important for an e�ective visualization.

5.2 Documenting Software Structures

For larger systems, the SHriMP views are well suited to exposing structures

and patterns in the software. The �sheye-view mechanism provides an alter-

native to scrolling by expanding nodes in a user de�ned area of interest and

14



FishProgram

Intro/Initialization

Utilities

main

PlayGame

(a)

FishProgram

PlayGame

Intro/Initialization

Utilities

main

Shared

UserMove

ComputerMove

(b)

countcards

drawcard

goodmove

countbooks

chkwinner

gofish

promove

compmove

printhand

usermove

printplayernrandom

instructions

FishProgram

PlayGame

Intro/Initialization

Utilities

main

init

usage

UserMove

ComputerMove

Shared

(c)

printplayer

usage

instructions

gofish
goodmove

countbooks

printhandcountcards

drawcard

chkwinner

promove

compmove

usermove

nrandom

FishProgram

PlayGame

Intro/Initialization

Utilities

UserMove

ComputerMove

Shared

init

main

(d)

Figure 9: SHriMP views depicting multiple levels of abstraction of a small C program.

15



(a) (b)

Figure 10: (a) The spring layout algorithm has been applied to the SQL/DS software system.

This algorithm helped to expose clusters of nodes on the fringe of the graph, which are

candidates for subsystems. (b) One of the clusters of nodes is scaled to show more detail.

concurrently reducing, but not hiding, the remainder of the graph. By zoom-

ing in on di�erent portions of a large graph, a user can quickly identify busy

nodes, candidate subsystems, and other important features. The �ltering of

busy nodes can considerably improve the comprehensibility of the graph.

In addition, a user can select a group of nodes which are not necessarily ad-

jacent in the graph, and then scale up these nodes for further study. Figure 10

presents a call graph extracted from SQL/DS, a million-line legacy software

system that has evolved over nearly two decades.10;29 Discovering patterns in

such large, complex systems is particularly di�cult. Figure 10(b) shows the

result of selecting and expanding the nodes in the forward dependency tree

of procedure calls from the ARIXI20 module in SQL/DS. By expanding re-

lated but distributed sets of nodes, structures in the graph can be emphasized

without adversely a�ecting the general layout of the graph.

By concurrently scaling up several di�erent substructures, a software main-

tainer can see their relative locations in the overall structure, examine their

similarities and di�erences, and visualize any dependencies among them.

5.3 Browsing Source Code

For software maintainers, an understanding of the high-level structure is often

a prerequisite to understanding the code of the modules or functions. With

16



SHriMP views, the source code becomes an integral part of the structural doc-

umentation, as opposed to being a separate entity. Consequently, a software

maintainer can seamlessly switch between the implementation and the docu-

mentation of a system. Early experiments indicate that this capability will

increase the maintainer's understanding considerably. It is not clear, however,

if the source code for larger programs can be e�ectively browsed in such a

manner; this issue is currently being investigated.

5.4 Navigating Software Hierarchies

As with any large information space, the navigation of large software systems

is non-trivial. In a multiple window approach, the user travels through the

hierarchy by opening new windows as they move from one level to the next.

It is not unusual for users to become \lost" as they move deeper in the hierar-

chy. The SHriMP technique, however, provides better contextual cues as they

navigate through the hierarchy. All steps in the path traveled are visible in

the form of nested nodes. A user can elect to return to any subsystem along

the branch traveled, and elide the information contained in that subsystem by

closing the node. By using the nested graph formalism in a single �sheye view,

previously manual operations to open, close, resize, and reposition windows

are now automatically performed by the �sheye-view algorithm.

Nevertheless, the multiple window approach originally provided by Rigi

may be desired in certain situations. For example, in a very large project, a

maintainer may only be interested in one small part of the system. A SHriMP

view may retain unnecessary information about higher levels of abstraction.

Also, the Rigi overview window is e�ective at presenting a tree-like view of

a hierarchy. This may be a more familiar visualization of a hierarchy than

SHriMP views for certain users. Therefore, combinations of both SHriMP

and traditional Rigi visualization techniques may be the best approach. For

example, a software maintainer may choose to open separate Rigi windows

until the subsystem of current interest is reached, and then produce a SHriMP

view to show the contents of this subsystem.

6 Conclusions

This chapter has demonstrated how structures of large software systems at

various levels of abstraction can be e�ectively explored and documented us-

ing SHriMP views. These views help users in the discovery phase of reverse

engineering by allowing them to see detailed structures and patterns, but still

view these structures within the context of the overall system structure. The

17



nesting feature of subsystem nodes implicitly communicates the parent-child

relationships and readily exposes the structure of the subsystem containment

hierarchy. For maintainers wishing to understand the structure of the software,

this approach provides a mechanism to present the high-level structure of the

system and simultaneously browse the implementation.

Early observations show that users quickly adopt SHriMP views and easily

exploit the relative advantages of this software visualization technique. The

e�ectiveness of this technique is currently being evaluated through user exper-

iments.

Acknowledgments

This work was supported in part by the British Columbia Advanced Systems

Institute, the IBM Software Solutions Toronto Laboratory Centre for Advanced

Studies, the IRIS Federal Centres of Excellence, the Natural Sciences and

Engineering Research Council of Canada, the University of Victoria, and Simon

Fraser University.

References

1. E.R. Tufte. Envisioning Information. Graphics Press, 1990.

2. B. A. Price, R. M. Baecker, and I. S. Small. A principled taxonomy

of software visualization. Journal of Visual Languages and Computing,

June 1993.

3. H.A. M�uller, K. Wong, and S.R. Tilley. Understanding software systems

using reverse engineering technology. In V.S. Alagar and R. Missaoui,

editors, Object-Oriented Technology for Database and Software Systems,

pages 240{252. World Scienti�c, 1995.

4. H.A. M�uller, M.A. Orgun, S.R. Tilley, and J.S. Uhl. A reverse engineer-

ing approach to subsystem structure identi�cation. Journal of Software

Maintenance: Research and Practice, 5(4):181{204, December 1993.

5. H.A. M�uller, S.R. Tilley, M.A. Orgun, B.D. Corrie, and N.H. Madhavji.

A reverse engineering environment based on spatial and visual software

interconnection models. In Proceedings of the Fifth ACM SIGSOFT

Symposium on Software Development Environments (SIGSOFT '92),

(Tyson's Corner, Virginia; December 9-11, 1992), pages 88{98, December

1992. In ACM Software Engineering Notes, 17(5).

6. S.R. Tilley, K. Wong, M.-A.D. Storey, and H.A. M�uller. Programmable

reverse engineering. International Journal of Software Engineering and

Knowledge Engineering, 4(4), December 1994.

18



7. T. Fruchtermann and E. Reingold. Graph drawing by force-directed

placement. Technical Report UIUC CDS-R-90-1609, Department of

Computer Science, University of Illinois at Urbana-Champaign, 1990.

8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-

ing of hierarchical systems. IEEE Transactions on Systems, Man, and

Cybernetics, 11(4):109{125, 1981.

9. E.M. Reingold and J.S. Tilford. Tidier drawing of trees. IEEE Trans-

actions on Systems, Man, and Cybernetics, SE-7(2), March 1981.

10. K. Wong, S.R. Tilley, H.A. M�uller, and M.-A.D. Storey. Structural

redocumentation: A case study. IEEE Software, 12(1):46{54, January

1995.

11. J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

12. D. Harel. On visual formalisms. Communications of the ACM, 31(5),

May 1988.

13. H.A. M�uller and K. Klashinsky. Rigi | A system for programming-

in-the-large. In Proceedings of the 10th International Conference on

Software Engineering (ICSE '10), (Ra�es City, Singapore; April 11-15,

1988), pages 80{86, April 1988. IEEE Computer Society Press (Order

Number 849).

14. M.M. Burnett, M.J. Baker, C. Bohus, P. Carlson, S.Yang, and P. van

Zee. Scaling up visual programming languages. IEEE Computer, Special

Issue on Visual Languages, 28(3), March 1995.

15. G.W. Furnas. Generalized �sheye views. In Proceedings of ACM CHI'86,

(Boston, MA), pages 16{23, April, 1986.

16. K.M. Fairchild, S.E. Poltrock, and G.W. Furnas. SemNet: Three-

dimensional graphic representations of large knowledge bases. In

Raymonde Guindon, editor, Cognitive Science and its Applications for

Human-Computer Interaction. Lawrence Erlbaum Associates, Publish-

ers, 1988.

17. M. Sarkar and M.H. Brown. Graphical �sheye views. Communications

of the ACM, 37(12), December, 1994.

18. B. Johnson and B. Shneiderman. Tree-maps: A space-�lling approach to

the visualization of hierarchical information structures. In Proceedings

Visualization 91, (San Diego, California: 22-25 October 1991), pages

284{291, Oct 1991.

19. E.G. Noik. A space of presentation emphasis techniques for visualizing

graphs. In Proceedings of Graphics Interface '94, (Ban�, Alberta: 18-20

May 1994), pages 225{233, May 1994.

20. M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. 3-

dimensional pliable surfaces: For e�ective presentation of visual informa-

19



tion. In UIST: Proceedings of the ACM Symposium on User Interface

Software and Technology, pages 217{227, 1995.

21. K. Kaugars, J. Reinfelds, and A. Brazma. A simple algorithm for drawing

large graphs on small screens. In Graph Drawing, volume 894 of Lecture

Notes in Computer Science. Springer-Verlag, October 1994.

22. J. Dill, L. Bartram, A. Ho, and F. Henigman. A continuously variable

zoom for navigating large hierarchical networks. In Proceedings of the

1994 IEEE Conference on Systems, Man and Cybernetics, 1994.

23. K. Misue and K. Sugiyama. Multi-viewpoint perspective display meth-

ods: Formulation and application to compound graphs. In 4th Intl.

Conf. on Human-Computer Interaction, Stuttgart, Germany, volume 1,

pages 834{838. Elsevier Science Publishers, September 1991.

24. M. Sarkar, S.S. Snibbe, O.J. Tversky, and S.P. Reiss. Stretching the

rubber sheet: A metaphor for viewing large layouts on small screens. In

User Interface Software Technology, 1993, pages 81{91, November 3-5,

1993.

25. Y.K. Leung, R. Spence, and M.D. Apperley. Applying bifocal displays

to topological maps. International Journal of Human-Computer Inter-

action, 7(1):79{98, 1995.

26. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and

the mental map. Journal of Visual Languages and Comput., 6(2):183{

210, 1995.

27. T.R. Henry and S.E. Hudson. Interactive graph layout. In UIST, Hilton

Head, South Carolina, pages 55{64, November 11-13, 1991.

28. M.-A.D. Storey and H.A. M�uller. Graph layout adjustment strategies.

In Proceedings of Graph Drawing 1995, (Passau, Germany, September 20

- 22, 1995). Springer Verlag, 1995. Lecture Notes in Computer Science.

29. M.-A. D. Storey and H.A. M�uller. Manipulating and documenting soft-

ware structures using SHriMP views. In Proceedings of the 1995 Inter-

national Conference on Software Maintenance (ICSM '95) (Opio (Nice),

France, October 16-20, 1995), 1995.

20


