
Composing Subsystem Structures
using (k,2)-partite Graphs†

Hausi A. Mu
..
ller

James S. Uhl

Department of Computer Science
University of Victoria

P.O. Box 1700
Victoria, B.C., Canada, V8W 2Y2

DCS-128-IR March 1990

† This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada under Grant A9202.

Composing Subsystem Structures
using (k,2)-partite Graphs†

Hausi A. Mu
..
ller

James S. Uhl

Department of Computer Science
University of Victoria

Victoria, BC V8W 2Y2

Abstract
Subsystem composition is the process of constructing composite software components out of
building blocks such as variables, procedures, modules, and subsystems. Hierarchical subsystem
structures are formed by imposing equivalence relations on the resource-flow graphs of the source
code. Composition algorithms often use a single equivalence relation (e.g., connection strength or
data binding measure) to automatically form tree-shaped composite structures.

This paper describes a clustering algorithm that uses four equivalence relations for identifying
subsystem structures. The resulting compositions are (k , 2)-partite graphs (a class of layered
graphs) rather than strict tree hierarchies. The algorithm is an integral part of our interactive
graph editor.

Keywords: Reverse engineering, design recovery, software maintenance, composition alterna-
tives, exact interfaces, (k , 2)-partite graphs, composition models.

1. Introduction
You don’t invent the answer, you reveal it.

—Jonas Salk

For the past three decades research in program
transformation has mainly concentrated on im-
proving the execution time of a program (i.e., op-
timizing compilers). Comparatively little
research has been devoted to program transfor-
mations that benefit the people who change and
maintain software. One avenue of research in
this latter realm of program transformation is to
optimize the structure of a given software system
for ease of future changes.

Restructuring a system to make it more
understandable is a promising but difficult under-
taking. One common approach is to identify sub-
system structures in the source code in order to
recover system abstractions and refinements.
Over the years, numerous batch algorithms have
been proposed to generate subsystem hierarchies
from module graphs, but no ideal composition

† This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada under Grant A9202.

measure has emerged from these investigations.
The algorithms are usually based on software en-
gineering principles that concern module interac-
tions such as low coupling, high strength, small
interfaces, and few interfaces.

Subsystem identification is repeated many
times over the life span of a software project.
During the design phase subsystem structures are
often used to split the project into work assign-
ments to manage the design and implementation
of the project. At integration time, subsystem
decompositions may serve as testing and integra-
tion plans. During the maintenance phase sub-
system structures are often uncovered from the
source code to verify existing documented struc-
tures and to be able to understand and limit the
effects of local changes on the entire system.
Thus, computing hierarchical composition struc-
tures is not only beneficial for reverse engineer-
ing and design recovery, but also for exploratory
design and rapid prototyping.

Discovering and identifying subsystem struc-
tures is an art. Our work is based on the premise
that an experienced software engineer will al-
ways be able to produce a ‘‘better’’ system

1

decomposition than an automatic procedure —
given sufficient time. However, the human
designer needs assistance from the programming
environment for the tedious and arduous tasks in-
volved in the composition process. A designer
may call upon the environment to produce alter-
native clusterings of a given set of modules and
then decide on strategies to form compositions.
As the hierarchy of subsystems is being built, the
software engineer can interactively modify the
layers and possibly undo some of the clusters if
they are deemed inappropriate.

This paper outlines an algorithm for building
multiple alternative subsystem hierarchies using
four equivalence relations. Section 2 introduces
the class of (k , 2)-partite graphs for modeling
multiple hierarchies and outlines software struc-
ture models. Section 3 defines four clustering
measures for building subsystem structures. The
composition algorithm and its analysis are
presented in Sections 4 and 5; The algorithm is
illustrated with an example in Section 6. Related
work is summarized in Section 7.

2. Software structure models
Software structures such as control flow, data
flow, and resource flow are often modeled by
directed weighted graphs. We use a special class
of directed graphs called (k , 2)-partite graphs for
presenting and representing software systems.
We first give a definition of these graphs and then
show how resource-flow graphs and multiple
subsystem hierarchies can be expressed using
(k , 2)-partite graphs.

2.1. The class of (k,2)-partite graphs
Definition. A directed graph G = (V , E) is
(k , 2)-partite if V can be partitioned into subsets
V 1, ..., Vn , where for all i ∈ {1, ..., n }, Vi ≤ k ;
and for all (u , v) ∈ E , there exists i ∈ {1, ..., n }
such that u , v ∈ Vi , or for i < n , u ∈ Vi and
v ∈ Vi +1.

More informally, a (k , 2)-partite graph consists of
a series of graph levels or layers as depicted in
Figure 1 below. Layers are connected by means
of level edges; however, level edges may only
connect adjacent layers (i.e., adjacent sets in the
sequence V 1, ..., Vn). The number of vertices per
layer is bounded by k . By bounding the size of a
layer, Mata-Montero was able to show that many
intractable graph problems can be solved

efficiently (i.e., in polynomial time) for (k , 2)-
partite graphs [ElMM 90]. We have also pro-
posed (k , 2)-partite graphs as the backbone for
hypertext systems [Mu

..
ll 89].

level n+3

level n+2

level n+1

level n

Figure 1. Directed (k , 2)-partite graph

2.2. Resource relations
The primary models used to describe, represent,
and manage software structure are the unit inter-
connection model and the syntactic interconnec-
tion model [Perr 87].

It is convenient for us to think of a resource
interconnection model as a directed weighted
graph, where the vertices of the graph are the
components of the system, and the edges are
dependencies induced by the resource supplier-
client relation. A directed edge from node a to b
indicates that module a provides a set of syntac-
tic objects to module b . Depending on the appli-
cation, the edge weights are a list of resource
names (e.g., S = {α, β, γ, δ}), the cardinality of
the resource set (e.g., S = 4), or even absent.
The main distinction between the unit and the
syntactic models is the granularity of intercon-
nection ranging from files, subsystems, and
modules in the unit model to nameable entities
defined in a programming language — pro-
cedure, constant, type, and variable — in the
syntactic model.

2

2.3. Composition relations
The graphs induced by the resource supplier-
client relation are ‘‘flat’’ and typically unwieldy.
To add organizational axes composition relations
are imposed on these graphs.

A composition relation collapses resource-
dependency subgraphs to form subsystems. If
the relation is constrained so that a given node
can only appear in one subsystem, then the rela-
tion induces a strict tree hierarchy. In our ap-
proach this restriction is not enforced and hence
the result is a layered graph or, more formally, a
(k , 2)-partite graph. The edges between layers in
such a graph represent composition dependencies
whereas the edges within a layer represent
resource dependencies.

Thus, a series of subsystem layers (resource-
dependency graphs) are modeled by a sequence
of layers G 1

. . . Gn of a (k , 2)-partite graph. The
grain size of the nodes increases with the se-
quence number — from the objects of the syntac-
tic model to the objects of the unit model.

It is useful to introduce a graph transforma-
tion which is usually called collapse for defining
and composing subsystem structures. Collapse
essentially replaces a subgraph — a set of
modules — by a single node — a subsystem. Its
inverse operation restores the original graph. To
make this operation completely reversible, we
not only have to restore the subgraph, but also the
edges between the subgraph and the remaining
graph.

Let G = (V , E) be a resource dependency
graph. For the purpose of describing the collapse
operation we simply replicate this graph to form
a series of graph layers G 1, ..., Gn . Connecting
corresponding nodes of adjacent layers by means
of level edges makes it a (k , 2)-partite graph.

Let Gs = (Vs , Es) be a subgraph of Gi +1 (i.e.,
Vs ⊆ Vi +1 and Es ⊆ Ei +1) and let Ec denote the
edges between Vs and the remaining graph (i.e.,
the set of all edges such that one end point is in
Vs and the other is in Vi +1 − Vs). Let El be the
set of level edges connecting the two correspond-
ing node subsets of Gi and Gi +1. By collapsing
Gs we mean the removal of Gs from Gi +1 and re-
placing it with a single node x ∈ Vi +1. The
edges Ec and the level edges El are detached
from the subgraph nodes Vs and re-attached to
the contracted node x as shown in Figure 2. The

re-attached edge sets are called Ec ′ and El ′. The
following set equations summarize the effects of
the collapse operation.

El = { (v , w) ∈ El v ∈ Vs , w ∈ Vi }

El ′ = { (v , w) ∈ El ′ v = x , w ∈ Vi }

Ec = { (v , w) ∈ Ec v ∈ Vs , w ∈ Vi +1 − Vs }

Ec ′ = { (v , w) ∈ Ec ′ v = x , w ∈ Vi +1 − Vs }

Vi +1 = Vi +1 − Vs ∪ { x }.

Ei +1 = { (v , w) ∈ Ei +1 v , w ∈ Vi +1 − Vs } ∪

{ (v , w) ∈ Ei +1 v ∈ Vi +1, w ∈ Vs }

level i+2

level i+1

level i

level i-1

Figure 2. Collapse

2.4. Exact interfaces
Most programming languages are imprecise with
respect to requisition and provision of resources
[WoCW 88]. Modules import and export entire
interfaces rather than specific objects.

Composition algorithms typically rely on the
availability of the exact syntactic interfaces or the
exact cross-references among software com-
ponents.

Definition. The exact interface EI (m) =
(ER (m), EP (m)) of a software component m
consists of a set of exact requisitions, ER (m),
and a set of exact provisions, EP (m) as defined

3

by the following set equations.

ER (m) =
x ∈ Env (m)∪ (Prov (x) ∩ Req (m))

EP (m) =
x ∈ Env (m)∪ (Prov (m) ∩ Req (x))

Env (m) — the environment of m — denotes
the nodes in a layer of a (k , 2)-partite graph
whereas m and x are single nodes in such a layer.

ER (m) is defined as the intersection of
Req (m) — the set of objects referenced in m —
and Prov (x) — the object sets provided by the
modules of the environment of m .

EP (m) is defined as the intersection of
Prov (m) — the set of objects provided by m —
and the object sets required by the clients of
m .

The exact interfaces of any level in a (k , 2)-
partite graph can be computed by tediously in-
specting the cross-reference listings produced by
a compiler. However, Uhl has described and im-
plemented algorithms for efficiently propagating
the exact interfaces from layer to layer [Uhl 89].

Note that the exact provisions of a component
are often a subset of the objects provided by the
component. Consequently, subsystems can en-
capsulate large interfaces, providing a consider-
ably smaller set of objects to the remainder of the
system (i.e., a small interface).

3. Composition measures
Taxonomic hierarchies are formed automatically
by computing cluster similarity measures
[DuEv 82]. This section defines two pairs of
measures for resource-flow graphs.

The purpose of the first pair is to capture the
two software engineering principles high strength
within a component and low coupling among
components. The intention of the second pair is
to identify loosely coupled components having
common clients or common suppliers. This
measure satisfies the software engineering princi-
ple few interfaces, because merging components
with common neighbors reduces the number of
interfaces among the components involved. The
composition algorithm presented in the next sec-
tion uses these measures for building composite
structures out of routines, modules, and subsys-
tems.

3.1. Interconnection strength measure
We define the interconnection strength IS (v , w)
of two nodes, v and w , in a resource-flow graph
as the exact number of syntactic objects ex-
changed between the two nodes. Two com-
ponents are said to be strongly coupled iff their
interconnection strength is greater than a certain
threshold Tsc and loosely coupled iff their inter-
connection strength is less than a certain thres-
hold Tlc . Tlc and Tsc can be increased and de-
creased in a stepwise fashion to obtain alternative
compositions and partitions, respectively.

Subsystems with high internal strength can be
identified by clustering strongly coupled com-
ponents. Subsystems with low coupling among
them can be found by separating loosely coupled
components or by using a graph partitioning al-
gorithm for computing articulation points. If the
removal of a vertex v disconnects a connected
graph G , then v is said to be an articulation
point. If G contains no articulation points then
G is biconnected.

The designers of Infuse invoke the intercon-
nection strength measure to build hierarchical ex-
perimental databases for managing source
changes [MaKa 88, PeKa 87]. Their rationale is
based on the premise that the probability of an in-
terface error between two modules is proportion-
al to the modules’ interconnection strength. Choi
and Scacchi compute articulation points with the
objective of minimizing alteration distances
[ChSc 90]

3.2. Common neighbor subset measure
We distinguish between the direct clients (im-
mediate successors), SUCC (x), and the direct
suppliers (immediate predecessors), PRED (x), of
a node x in a resource-flow graph. Two com-
ponents are similar with respect to their clients iff
they provide objects to similar sets of clients.
Analogously, two components are similar with
respect to their suppliers iff they require objects
from similar sets of suppliers. Thus, the common
client and supplier subsets of a set M of com-
ponents, CS (M) and SS (M), are defined by the
following set equations.

CS (M) =
x ∈ M∩ SUCC (x)

4

SS (M) =
x ∈ M∩ PRED (x)

Two nodes, v and w , are said to be common
neighbors with respect to their clients (suppliers)
iff the cardinality of their client (supplier) subset
CS (v , w) (SS (v , w)) is greater than a certain

threshold Tcs (Tss).

For example, consider the graph component
on the left in Figure 3; nodes a , b , and d are
clients of both x and y ; but c is only a client of
x . Thus, the common client subset of x and y is
{a , b , d }. Due to their similar clients, x and y
are merged to form a subsystem — the graph
component on the right in Figure 3.

a b c d

x y

a b c d

xy

Figure 3. Merging neighbors

Often library routines which implement a re-
lated set of primitives do not depend on each oth-
er. Examples of such libraries under Unix in-
clude the the standard C library stdlib and
the mathematics library math. Thus, if a rou-
tine out of one of these libraries is used by a
given client c , it is likely that semantically relat-
ed routines are also required by c . Schwanke
and Platoff use a clustering algorithm based on
this measure in their ARCH environment
[ScPl 89].

4. Subsystem composition algorithm
We now have sufficient machinery to formulate
the subsystem composition algorithm. The algo-
rithm essentially consists of five major steps
operating on resource-flow graphs. Each step
identifies subgraphs according to some composi-
tion rule and then forms subsystems by collaps-
ing these subgraphs. The steps were designed to
be self-contained and efficient so that they can be
invoked individually from our interactive graph
editor which is part of the Rigi system for
programming-in-the-large [Mu

..
Kl 88, MHHL 89].

Subsystem composition algorithm:

Input: A directed weighted resource-flow graph,
G = (V , E). The weights on E are the cardinali-
ties of the exact sets of objects exchanged among
the components in V .
Output: A (k , 2)-partite subsystem composition
graph consisting of a sequence of resource-flow
graphs G 1 ... Gn .
Method: The first two steps preprocess the initial
resource-flow graph and are thus only applied
once. The last step cleans up the generated com-
position structure in a postprocessing step. Steps
3 and 4 are applied repeatedly to form layers of
subsystems. The example in Section 6 shows
how the different steps of the algorithm can be
intermixed. Note that each step affects only two
adjacent layers of a (k , 2)-partite graph.

1. Remove omnipresent nodes
For each node v ∈ V in G compute the
number of direct clients of v (i.e., immediate
successors). If SUCC (v) is greater than a
certain threshold Top , then v is said to be
omnipresent. Omnipresent components ob-
scure system structure and are therefore re-
moved from G together with all their in-
cident edges. An example of an omnipresent
node is a debugging module containing de-
bug variables or routines which are refer-
enced by most other system components.

2. Compose by standard library
For each standard library L , identify the
components of G that are members of L and
collapse the identified subgraph to a subsys-
tem.

3. Compose by interconnection strength
For each edge (v , w) ∈ E in G compute its
interconnection strength IS (v , w). One of
the following three conditions is then execut-
ed depending on the value of IS (v , w). Note
that only one layer is built with each invoca-
tion of this step and the interconnection
strength relation is transitive; hence, the ord-
er in which node pairs are merged is incon-
sequential.

IS (v , w) ≥ Tsc

v and w are collapsed into a single subsys-
tem. If a node, say v , has already been as-
signed to a subsystem in a previous iteration
of this step, then the collapse operation
merges the other node, w , into that subsys-
tem. If both v and w have already been as-

5

signed to subsystems in previous iterations,
then the two subsystems are merged.

IS (v , w) ≤ Tlc

v and w are ‘‘collapsed’’ into two separate
subsystems (i.e., each subsystem contains a
single node). If a node, say v , has already
been assigned to a subsystem in a previous
iteration of this step, then the collapse opera-
tion has no effect.

Tlc < IS (v , w) < Tsc

Node pairs in this category are neither
strongly nor loosely coupled and therefore
assigned to the same subsystem.

4. Compose by common neighbor
For each node pair v , w compute the com-
mon client subset CS (v , w) and the com-
mon supplier subset SS (v , w). If the cardi-
nalities of CS (v , w) and SS (v , w) are
greater than or equal to their respective
thresholds Tcs and Tss (i.e., v and w have ei-
ther similar clients or similar suppliers and
are therefore common neighbors), then v and
w are collapsed into a subsystem. If a node,
say v , has already been assigned to a subsys-
tem in a previous iteration of this step, then
the collapse operation merges the other
node, w , into that subsystem. The algorithm
is optimized based on the premise that
resource-flow graphs usually have low densi-
ty. Hence, the algorithm below finds the
common neighbors of a node x by inspect-
ing the neighborhood of x .

for each vertex x ∈ V do
for each y ∈ SUCC(x) do

for each z ∈ PRED(y) do
CS(x, z) = SUCC(x) ∩ SUCC(z);
if CS(x, z) ≥ Tcs then

collapse(x, z)
end

end
end;
for each y ∈ PRED(x) do

for each z ∈ SUCC(y) do
SS(x, z) = PRED(x) ∩ PRED(z);
if SS(x, z) ≥ Tss then

collapse(x, z)
end

end
end

end

5. Clean up layers
Identify and remove the subsystems that

contain only one component by merging
them with their parent nodes.

5. Time complexity
Let n and e be the cardinalities of the node and
edge sets of the initial resource-flow graph. The
pre- and postprocessing (Steps 1, 2, and 5) can all
be implemented in O (n + e) time. Step 3, com-
puting the interconnection strength for each edge
in the graph, takes O (e) time. Step 4 takes time
O (n 2) in the worst case. However, the
neighborhood-search algorithm inspects only
O (n) pairs of nodes on average due to the sparsi-
ty of the resource-flow graphs. Thus, Step 4 re-
quires O (n 2) time in the worst case and O (n)
time in the expected case.

Steps 3 and 4 are invoked at most once for
each layer built. In the worst case, even though
Steps 3 and 4 may generate subsystem alterna-
tives, lg n layers are typically generated. Thus, it
takes at most O ((n 2 + e)lg n) time in the worst
case and O ((n + e)lg n) time in the expected
case to complete a system composition. More-
over, all steps of the subsystem composition al-
gorithm are sufficiently efficient so that they can
be routinely invoked in an interactive environ-
ment.

6. An example
This section illustrates Steps 3 and 4 of our com-
position algorithm.

A sample resource-flow graph is depicted in
Figure 4. The edge weights indicate the number
of objects exchanged among the components.
Edges with no labels have a weight of one. By
invoking shared neighbor composition step with
a common client threshold Tcs = 2, we generate
the graph in Figure 5 — a new layer in the com-
position graph. Another layer (Figure 6) is ob-
tained by applying Step 3, interconnection
strength reduction with a strong coupling thres-
hold Tsc = 3. A further reduction with Tsc = 1
leads to a single node. Figure 7 shows the
hierarchical subsystem structure with singleton
nodes removed. The leaf nodes represent the ini-
tial components; the interior white and black
nodes represent high-strength subsystems and
shared-neighbor subsystems, respectively.

Figure 8 depicts a non-hierarchical subsystem
structure obtained by applying Steps 3 and 4 to

6

the same composition layer.

1 2 3 4

5 6 7 8

9 10 11 12

3

2
2 3

2 3

2

Figure 4. Initial resource-flow graph

1 2 3,4

5,6 7 8

9 10 11 12

3

3 5

3 2 3

2

Figure 5. Composition by shared neighbors

1,2

5,6,9,10

3,4,7,8,11,12

Figure 6. Composition by interconnection strength

1 2 9 10 7 8 1112

5 6 3 4

Figure 7. Hierarchical subsystem structure

1 2 11 10 9

7 5 6

3 4 8 12

Figure 8. Non-hierarchical subsystem structure

7. Related work
Belady and Evangelisti use data bindings to form
a flat module graph out of procedures [BeEv 82].
A data binding is an ordered triple (p , x , q)
where p and q are procedures and x is a variable
within the static scope of both p and q .
Hutchens and Basili extended this approach to
produce dendrograms (hierarchies of modules)
[HuBa 85]. Selby and Basili also use cluster
analysis based on data bindings to localize errors
and to identify error-prone system structures
[SeBa 88].

Kaiser, Maarek, and Perry use partitioning
and clustering algorithms for change analysis in
the Infuse project [KaPe 87, PeKa 88, MaKa 88].
Infuse clusters the set of modules involved in a
change into a hierarchy of experimental data-
bases where the hierarchy controls the integration
of changes. Their algorithms are based on inter-
connection strength.

Another partitioning algorithm based on inter-
connection strength was recently proposed by
Choi and Scacchi [ChSc 90]. Their objective is
to obtain a subsystem decomposition with
minimal coupling and minimal alteration-
distance among modules. They compute the arti-
culation points and the biconnected components
of the module graph and then build a hierarchy
by assigning to each detected articulation point
and each biconnected component a subsystem.

Schwanke and Platoff recently outlined a
clustering measure based on shared neighbors for
their ARCH environment. They intend to use
this measure for summarizing call graphs, split-
ting large include files, and improving system
modularity.

Newbery proposed a graph-theoretic approach
to the problem of reducing the complexity of a
directed graph [Newb 89]. She uses edge cluster-
ing as opposed to node clustering in her extendi-
ble directed graph editor (EDGE).

8. Conclusions
This work grew out of an attempt to build sub-
system hierarchies for the Sun graphics libraries
sunwindow and suntool [Uhl 89]. As a result of
this investigation, we realized that a more general
and flexible representation is needed to account
for the different views and alternative composi-
tions. Moreover, because of the size of the

7

graphs we had great difficulties in interactively
building the first level of subsystems on top of
the library modules using our graph editor Rigi.

As a consequence of this investigation, we
developed (k , 2)-partite graphs which have most
of the properties of strict hierarchies, but are am-
ply flexible for modeling. We then augmented
the interactive graph editor with the clustering al-
gorithms presented in Section 4 to be able to
compose subsystem structures more efficiently.
The algorithms are intended to capture the
software engineering principles high strength
within a subsystem, low coupling among subsys-
tems, and small and few interfaces among subsys-
tems.

On the one hand, when composing subsystem
structures software engineers make intuitive or
subjective decisions based on experience, skill,
and insight which cannot and should not be au-
tomated. On the other hand, composition algo-
rithms are objective with respect to a given simi-
larity measure, but usually take only one measure
into account. Providing an expert designer with a
selected set of clustering algorithms through an
interactive graph editor is therefore an ideal solu-
tion.

References
[BeEv 82] Belady, L.A. and C.J. Evangelisti.

‘‘System Partitioning and its Measure,’’
Journal of Systems and Software, 2(1), pp.
23-29, February 1982.

[ChSc 90] Choi, A.C. and W. Scacchi. ‘‘Extracting
and Restructuring the Design of Large
Software Systems,’’ IEEE Software, 7(1),
pp. 66-71, January 1990.

[DuEv 82] Dunn, D. and B.S. Everitt. An Introduction
to Mathematical Taxonomy, Cambridge
University Press, 1982.

[ElMM 90] Ellis, J.A.; M. Mata-Montero; and H.A.
Mu

..
ller. ‘‘Serial and Parallel Algorithms

for (k , 2)-partite Graphs,’’ Technical
Report, University of Victoria, February
1990.

[FlMu 88] Fletton, N.T. and M. Munro.
‘‘Redocumenting Software Systems using
Hypertext Technology,’’ In Proceedings of
Conference on Software Maintenance —
1988, (Phoenix, AZ, October 24-27), pp.
54-59, November 1988.

[HuBa 85] Hutchins, D.H. and V.R. Basili. ‘‘System
Structure Analysis: Clustering with Data

Bindings,’’ IEEE Transactions on Software
Engineering, SE-11(8), pp. 749-757,
August 1985.

[KaPe 87] Kaiser, G.E. and D.E. Perry. ‘‘Workspaces
and Experimental Databases: Automated
Support for Software Maintenance and
Evolution,’’ In Proceedings of Conference
on Software Maintenance — 1987, (Austin,
TX, September 21-24), pp. 108-114,
November 1987.

[MaKa 88] Maarek, Y.S. and G.E. Kaiser. ‘‘Change
Management for Very Large Software
Systems,’’ In Proceedings of Phoenix
Conference on Computers and
Communications, (March 16-18,
Scottsdale, AZ), pp. 280-285, March 1988.

[MHHL 89] Mu
..
ller, H.A; D. Hoffman; N. Horspool;

and M. Levy. ‘‘Presentation of Software
Development Information in K2,’’ INFOR
— Special Issue on Intelligence
Integration: Part 2, 27(2), pp. 206-220,
May 1989.

[Mu
..
Kl 88] Mu

..
ller, H.A; and K. Klashinsky. ‘‘Rigi —

A System for Programming-in-the-large,’’
In Proceedings of the 10th International
Conference on Software Engineering
(ICSE), (Raffles City, Singapore, April 11-
15), pp. 80-86, April 1988.

[Mu
..
ll 89] Mu

..
ller, H.A. ‘‘(K,2)-Partite Graphs as a

Structural Basis for the Construction of
Hypermedia Systems,’’ Technical Report
Department of Computer Science,
University of Victoria, DCS-119-IR, June
1989.

[Newb 89] Newbery, F.J. ‘‘Edge Concentration: A
Method for Clustering Directed Graphs,’’
In Proceedings of the 2nd International
Workshop on Software Configuration
Management, (Princeton, NJ, October 24).
In ACM SIGSOFT Software Engineering
Notes, 17(7), pp. 76-85, November 1989.

[PeKa 87] Perry, D.E. and G.E. Kaiser. ‘‘Infuse: A
Tool for Automatically Managing and
Coordinating Source Changes in Large
Systems,’’ In ACM Fifteenth Annual
Computer Science Conference, (St. Louis,
MO), pp. 292-299, February 1987.

[Perr 87] Perry, D.E. ‘‘Software Interconnection
Models,’’ In Proceedings of the 9th
International Conference on Software
Engineering, (Monterey, CA), pp. 61-69,
March 30 - April 2 1987.

[ScPl 89] Schwanke, R.W. and M.A. Platoff. ‘‘Cross
References are Features,’’ In Proceedings

8

of the 2nd International Workshop on
Software Configuration Management,
(Princeton, NJ, October 24). In ACM
SIGSOFT Software Engineering Notes,
17(7), pp. 86-95, November 1989.

[SeBa 88] Selby, R.W. and V.R. Basili. ‘‘Error
Localization During Software
Maintenance: Generating Hierarchical
Descriptions from Source Code Alone,’’ In
Proceedings of Conference on Software
Maintenance — 1988, (Phoenix, AZ,
October 24-27), pp. 192-197, November
1988. 1989-90 J. Uhl M.Sc., Computer
Science,

[Uhl 89] Uhl, J.S. ‘‘Discovering Structure in Large
Software Systems,’’ M.Sc. Thesis,
University of Victoria, June 1989.

[WoCW 88] Wolf, A.L.; L.A. Clarke; and J.C. Wileden.
‘‘A Model of Visibility Control,’’ IEEE
Transactions on Software Engineering,
SE-14(4), pp. 512-520, April 1988.

9

