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A Reverse Engineering Approach
To Subsystem Structure Identi�cation1

SUMMARY

Reverse engineering is the process of extracting system abstractions and design information

out of existing software systems. This process involves the identi�cation of software artifacts

in a particular subject system, the exploration of how these artifacts interact with one

another, and their aggregation to form more abstract system representations that facilitate

program understanding.

This paper describes our approach to creating higher-level abstract representations of a

subject system, which involves the identi�cation of related components and dependencies,

the construction of layered subsystem structures, and the computation of exact interfaces

among subsystems. We show how top-down decompositions of a subject system can be

(re)constructed via bottom-up subsystem composition. This process involves identifying

groups of building blocks (e.g., variables, procedures, modules, and subsystems) using com-

position operations based on software engineering principles such as low coupling and high

cohesion. The result is an architecture of layered subsystem structures.

The structures are manipulated and recorded using the Rigi system, which consists of a

distributed graph editor and a parsing system with a central repository. The editor provides

graph �lters and clustering operations to build and explore subsystem hierarchies interac-

tively. The paper concludes with a detailed, step-by-step analysis of a 30-module software

system using Rigi.

KEYWORDS: Software maintenance, reverse engineering, program understanding, soft-

ware engineering principles, resource-
ow graphs, subsystem hierarchies, subsystem compo-

sition, exact interfaces, re-engineering, change analysis.
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1 INTRODUCTION

Software maintenance is de�ned as the modi�cation of a software product after delivery

to correct faults, to improve performance or other attributes, or to adapt the product to

a changed environment (ANSI/IEEE, 1983). In an ideal world, software projects are well

prepared for such maintenance tasks. The design information is readily available to the

maintainers, the documentation accurately re
ects the source code (including the cumulative

e�ects of all the evolutionary modi�cations), and the system is structured in an intuitive and

predictable manner that facilitates understanding and allows maintenance to be performed

with con�dence. Unfortunately, evolving software projects rarely re
ect this ideal scenario.

During long-term maintenance of large software projects, rationales for design decisions

are often not available because the people who might be able to trace the change histories

are no longer with the project. Similarly, design documents may be inconsistent with respect

to the actual source code due to undocumented corrections, improvements, customizations,

or enhancements. This kind of evolution is common and can complicate maintenance tasks

considerably. The source code is often the only reliable means for a software maintainer to

decide how a software system is to be modi�ed when implementing a desired enhancement

or eradicating an undesired feature. However, the sheer size of the source text often prevents

a thorough and exhaustive analysis of all potentially a�ected components and dependencies.

A seemingly inconsequential change may have unforeseen and sometimes devastating results

even when only a small portion of the code is actually modi�ed. Therefore, the e�ects of

any modi�cation must be considered carefully, not only locally, but throughout the system.

A good �rst step in analyzing large amounts of source code is to identify system abstrac-

tions and, in particular, to determine overall structure and to recover architectural design

information. This recovered information can then be used to break down the source code

into understandable and manageable subsystems at various levels of abstraction. These sub-

system structures, in turn, can then serve as organizational axes for program understanding

as well as risk, change, and impact analyses. Reverse engineering has emerged as a promising



technology for recognizing such architectural features in source texts (Forte, 1992). Note that

our approach concentrates on structural abstractions as opposed to functional abstractions

as for example in the REDO project (Breuer et al., 1991).

The process of reverse engineering a subject system is usually de�ned as consisting of two

distinct phases (Arnold, 1990; Chikofsky and Cross II, 1990): (1) the identi�cation of the

system's current components and their interrelationships, and (2) the extraction of system

abstractions and design information. The information produced as a result of this process

can then serve as a basis for system comprehension and analysis.

The aim of our approach to extracting system abstractions out of a subject system is to

expose its overall structure. In particular, it involves the identi�cation of subsystems, the

construction of hierarchies of subsystem structures, and the computation of exact interfaces

among subsystems. Once the structural properties of the system are identi�ed using this re-

verse engineering approach, the e�ects of local changes can be traced e�ectively by analyzing

the resources exchanged among subsystems at various levels of detail.

Identifying subsystems is a precursor to creating hierarchical subsystem structures and

is performed many times over the life span of a software project. During the design phase,

subsystem structures are often used to split the project into work assignments to manage the

design and implementation of the project. At integration time, subsystem decompositions

may serve as testing and integration plans. Thus, constructing hierarchical composition

structures can not only be bene�cial for long-term maintenance, but also during the early

design stages.

Discovering subsystem structures is an art. Our work is based on the premise that, given

su�cient time, an experienced software engineer is usually able to decompose a system better

than an automatic procedure can. However, the human designer needs assistance from the

development environment for the tedious and arduous tasks involved in the decomposition

process. A designer may call upon the environment to produce alternative clusterings of a

given set of modules and then decide on strategies to form compositions. As hierarchies of

subsystems are being built, the software engineer can interactively modify the layers and



possibly undo some of the clusters if they are later deemed inappropriate. Thus, the role

of the human software engineer constitutes a central and integral part of our approach to

subsystem identi�cation and composition. In short, we subscribe to the motto \automate

as much as possible, but never fully automate."

This paper presents techniques for discovering, restructuring, and analyzing subsystem

structures in software systems using Rigi,2 a system for reverse engineering. Section 2 outlines

our subsystem composition methodology. Section 3 introduces software structure models

for modeling multiple subsystem hierarchies and discusses the relations used for composing

subsystem structures. In Section 4, we present measures for identifying subsystem structures

based on established software engineering principles. The features of the Rigi system that are

relevant for the subsystem identi�cation and composition process are described in Section

5. In Section 6, we analyze a real software system to demonstrate how Rigi's composition

methods can be utilized to recover architectural design information. This section also outlines

subsystem composition strategies that can be realized by the software engineers using the

composition operations provided by the Rigi system. Section 7 discusses some of the lessons

learned from reverse engineering this particular subject system. Related work is summarized

in Section 8. The paper concludes with a brief report on our early experience with the Rigi

system.

2 SUBSYSTEM COMPOSITIONMETHODOLOGY

Reverse engineering generally involves extracting design artifacts out of the source code

and building or synthesizing abstractions that are less implementation-dependent than the

source code (Chikofsky and Cross II, 1990). Note that in this process the source code

of the subject system is not altered, although additional information about the system is

constructed and generated. In contrast, the process of re-engineering typically consists of

a reverse engineering phase followed by a forward engineering or re-implementation phase

that alters the source text.

2Rigi is named after a mountain in central Switzerland.



The �rst phase of the reverse engineering process, the extraction of software artifacts,

is language-dependent and essentially involves parsing the source code and storing the arti-

facts in a repository. Our parsing system currently supports the programming languages C,

COBOL, and a proprietary IBM system-programming language. We use GRAS, a database

speci�cally designed to represent graph structures, as a central repository to store the parsed

artifacts (Brandes and Lewerentz, 1985). The software engineer can then manipulate the

stored artifacts through an interactive graph editor. The interaction among the tools of the

Rigi system is depicted in Figure 1.

Our approach to the second phase features a semi-automatic language-independent sub-

system composition methodology to construct hierarchical subsystem structures (M�uller and

Uhl, 1990). This process involves the interactive construction of aggregate software compo-

nents out of building blocks (e.g., variables, procedures, modules, and subsystems) using the

Rigi system. Hierarchical subsystem structures are formed by imposing equivalence relations

on the resource-
ow graphs of the source code. The relations embody software engineering

principles that concern module interactions such as small and few interfaces between subsys-

tems and high strength within subsystems. The resulting composition structures are layered

graphs called (k; 2)-partite graphs (M�uller and Uhl, 1990; Mata-Montero, 1990).

An important ingredient in our composition methodology is software quality measures

based on exact interfaces and established software engineering principles to evaluate sub-

system structures (M�uller, 1990). These quality measures quantify the encapsulation e�ect

of individual modules or subsystems as well as the e�ectiveness of module or subsystem

compositions with respect to separating concerns. In other words, we measure the strength

or cohesion of subsystems and the thickness of the �re walls among subsystems.

Using these subsystem composition facilities and measures, which are supported by the

Rigi system, software structures such as call graphs, data dependency graphs, module graphs,

include �le dependency graphs, and directory hierarchies can all be summarized, analyzed,

and optimized subject to software engineering principles. Being able to retrieve, browse, and

trace these structures e�ectively is a key to structure comprehension which is a prerequisite



to system understanding.

In summary, our subsystem composition methodology involves the following stages:

1. The extraction of relevant system components and dependencies out of the subject

system's source code to form resource-
ow graphs;

2. The semi-automatic composition of subsystem hierarchies using the Rigi system on top

of these resource-
ow graphs;

3. The computation of exact interfaces among the constructed subsystems;

4. The evaluation of the (re)constructed subsystem structures using measures based on

established software engineering principles; and �nally,

5. The capturing of pertinent view sequences (snapshots of the reverse engineering envi-

ronment) for target audiences, which can be recalled, inspected, played back, and can

serve as a basis for further investigations and explorations.

The following discussion focuses on software structure models for multiple subsystem hi-

erarchies, composition measures, operations provided by the Rigi system to support di�erent

composition strategies, and, in particular, the implementation of the �rst three stages of the

above outlined subsystem composition methodology.

3 SOFTWARE STRUCTURE MODELS

Software structures such as control 
ow, data 
ow, resource 
ow, as well as aggregation and

generalization hierarchies, are often modeled by directed weighted graphs. The nodes and

directed edges (arcs) of these graphs represent system components and their dependencies.

The weights on the arcs vary with the application. We use a special class of directed graphs,

called (k; 2)-partite graphs, for representing the structure of software systems. In this section,

we show how resource-
ow graphs and multiple subsystem hierarchies can be modeled using

these layered graphs.



3.1 Resource Relations

The primary models used to describe, represent, and manage software structure are the unit

interconnection model and the syntactic interconnection model (Prieto-Diaz and Neighbors,

1986; Perry, 1987). The main distinction between the unit and the syntactic models is the

granularity of interconnection ranging from �les, subsystems, classes, and modules in the

unit model to the nameable entities of programming languages such as procedures, functions,

constants, or variables in the syntactic model. Below, we extend these two models to form

arbitrary subsets of system components and dependencies. The graphical representations

of these software structures are captured by a new type of software interconnection model

based on spatial and visual imagery (M�uller et al., 1992).

It is convenient for us to think of such an interconnection model as a directed weighted

resource-
ow graph (RFG). The vertices and edges of an RFG represent system components

and resource supplier-client relations, respectively. A directed edge from component v to w

indicates that component v provides a set of syntactic objects to component w. In other

words, w is a client of v, and v is a supplier of w. Depending on the application, the edge

weights may be a set of resource names (e.g., functions, data types, modules and subsystems),

the cardinality of the resource set, or even absent.

More formally, a resource-
ow graph G = (V;E) consists of two components: (1) V is a

set of system components, and (2) E � V � V is a set of binary tuples of the form < v;w >

representing supplier-client relations between components (i.e., a directed edge from v to w).

In the following discussion, we assume that the edge weights (EW ) are a list of resource

names (e.g., EW (v;w) = ffa; fb; dtg).

The following terminology is also used in subsequent sections when referring to RFGs:

the two sets of all syntactic objects provided and required by a component v 2 V , denoted by

Prv(v) and Req(v), respectively, are called the provisions and requisitions of the component.

These resource sets are de�ned in terms of edge weights:

Prv(v) =
[

x2V

EW (v; x);



Req(v) =
[

x2V

EW (x; v):

3.2 Composition Relations

Programming languages o�er modules and classes to aggregate and encapsulate sets of re-

lated routines, data types, variables, and constants. Files and directories can then be used

to group related modules or classes to form subsystems. In turn, subsystems can be fur-

ther composed to form (multiple) hierarchies of subsystems. The containment relationships

of these resulting hierarchical structures constitute composition dependency graphs (CDGs).

The nodes of a CDG represent system components or subsystems and the arcs signify ag-

gregation or composition relationships. In the sequel, the nodes of a CDG are referred to

as subsystems regardless of whether they denote functions, data types, classes, modules, or

high-level subsystems.

If the composition relation is constrained so that a given node can only appear in one

subsystem, then the relation induces a strict tree hierarchy. In our model this restriction

is not enforced, resulting in CDGs that are directed, acyclic graphs. The main reason for

this structural relaxation is to be able to represent multiple subsystem hierarchies within

the same model.

The graphs resulting from a combination of the graphs induced by resource and composi-

tion relations are termed (k; 2)-partite graphs. As depicted in Figure 2, a (k; 2)-partite graph

consists of a series of graph layers G1; : : : ; Gn, modeling a series of subsystem layers or RFGs.

Layers are connected by means of vertical edges; however, vertical edges may only connect

adjacent layers (i.e., at most two layers or adjacent sets in the sequence V1; : : : ; Vn). More-

over, the number of nodes per layer is bounded by k for theoretical reasons (Mata-Montero,

1990).



3.3 Exact Interfaces

At the unit level, most programming languages are imprecise with respect to requisition and

provision of resources (Wolf et al., 1988). For example, modules often import and export

entire interfaces rather than speci�c objects. Given composition and resource relations as

outlined in the preceding sections, one can compute exact syntactic interfaces or exact cross-

references among any subsets of system components (Uhl, 1989). Exact interface information

at various levels of abstraction is extremely useful for risk, change, and impact analyses

(Tilley, 1992).

Let v;w 2 V be components in a resource-
ow graph G = (V;E). The exact interface

between v and w is a pair consisting of a set of exact requisitions of v from w, ER(v;w), and

a set of exact provisions of v to w, EP (v;w), which are de�ned as follows:

ER(v;w) = Req(v) \ Prv(w);

EP (v;w) = Prv(v) \ Req(w):

Thus, ER(v;w) is de�ned as the intersection of the requirements of v and the provisions of

w, and EP (v;w) is the intersection of the provisions of v and the requisitions of w. These

de�nitions can easily be extended to entire subgraphs of V .

4 COMPOSITION MEASURES

There are many ways in which composition relations can be imposed on resource-
ow graphs.

However, during the process of program understanding, we are particularly interested in

subsystem structures that expose the overall architecture of the subject system, help recover

original design decisions, and facilitate system comprehension. The methods and strategies

that have been used in software development for subsystem decomposition can thus be used

as a guide during discovery and reconstruction of subsystem structures.

This section introduces two sets of software composition measures for RFGs based on

the established software engineering concepts of coupling and cohesion (Myers, 1975). High



coupling among subsystems and low cohesion within subsystems is indicative of a lack of

information hiding, which can complicate program understanding and maintenance e�orts

considerably. Low coupling among subsystems and high cohesion within subsystems mini-

mizes the number of paths through which changes and errors can be propagated throughout

the system, and localizes both change and impact analyses.

The intended purpose of the �rst set of similarity measures is to capture the two software

engineering principles high strength within a component and low coupling among components.

The intention of the second set is to identify loosely coupled components having common

clients or common suppliers. The latter measure captures the software engineering principle

few interfaces. Similarity measures have been studied extensively in many other areas to

devise clustering methods and taxonomic hierarchies (Dunn and Everit, 1982).

4.1 Interconnection Strength Measures

The interconnection strength IS(v;w) of two nodes, v and w; in an RFG is de�ned as the

exact number of syntactic objects exchanged between the two nodes. More formally,

IS(v;w) = jER(v;w)j+ jEP (v;w)j:

Two components are said to be strongly coupled if their interconnection strength is greater

than the high-strength threshold Th and loosely coupled if their interconnection strength is less

than the low-strength threshold Tl: The thresholds Tl and Th can be increased and decreased

in a stepwise fashion to obtain alternative compositions and partitions and to control the

sizes of the interfaces among subsystems.

Subsystems with high cohesion can be found by identifying strongly coupled components.

Subsystems with low coupling among them can be found by separating loosely coupled

components or by using a graph partitioning algorithm for computing articulation points. If

the removal of a node v disconnects a connected graph, then v is said to be an articulation

point (Aho et al., 1974, p. 179). The internal strength of a given component v can be

computed as the sum of (the cardinality of) the weights of all the edges in the subgraph



subsumed by v through composition dependencies.

4.2 Common Clients/Suppliers Measures

The common clients/suppliers measures are intended for the identi�cation of loosely cou-

pled components having common clients or common suppliers. These measures satisfy the

software engineering principle of few interfaces among components, because merging com-

ponents that have common clients or suppliers reduces the number of interfaces among the

components involved.

Two components are similar with respect to their clients if and only if they provide

objects to similar sets of clients. Analogously, two components are similar with respect to

their suppliers if and only if they require objects from similar sets of suppliers. Thus, the

common client and supplier subsets of a setM of system components in an RFG G = (V;E);

CS(M) and SS(M); respectively, are de�ned by the following equations:

CS(M) =
\

x2M

fv 2 V j < x; v >2 Eg;

SS(M) =
\

x2M

fv 2 V j < v; x >2 Eg:

Two nodes, v and w; are said to be neighbors or siblings with respect to their clients (sup-

pliers) if and only if the cardinality of their client (supplier) subset jCS(fv;wg)j (jSS(fv;wg)j)

is greater than the client (supplier) threshold Tc (Ts).

Sibling nodes are often found in libraries: library routines may implement a set of prim-

itives with analogous functionality (i.e., they are logically related), but are not directly

implemented in terms of each other. Examples of such libraries under UNIX3 include the

standard C library stdlib and the mathematics library math. Thus, if a routine out of one

of these libraries is used by a given client c; it is likely that similar library routines are also

used by c:

3UNIX is a trademark of Unix Systems Laboratories, Inc.



5 RIGI EDITOR

The user interface of the Rigi system is a distributed, window-based, graph editor that

allows the users to edit, maintain, and explore the objects stored in an underlying repository

representing a software system (M�uller and Klashinsky, 1988). This section outlines the

salient operations of the graph editor for discovering, composing, exploring, visualizing, and

analyzing layered subsystem structures.

5.1 Basic Operations

The user interacts with the Rigi editor via the mouse and the keyboard in a multi-window

environment such as Sunview, OpenLook, or Motif. Most of the operations provided involve

a group of selected objects (e.g., modules or subsystems) and/or dependencies (e.g., function

calls or data type references) in a (k; 2)-partite graph and which are normally displayed

in a single window. The editor provides navigation facilities to explore software systems

both laterally (at the same level of detail) using scroll bars and vertically (at increasing or

decreasing levels of detail) by opening and closing documents. Individual layers as well as

hierarchical cross-sections of a (k; 2)-partite graph (or parts thereof) can be displayed in a

variety of ways for visual inspection purposes. A collection of windows with hypertext-like

annotations (snapshots of the user interface) can be saved, recalled, and played back for

further inspection and documentation purposes (Tilley et al., 1992).

5.1.1 Basic graph editing

Entire subgraphs and hierarchies of subgraphs displayed in a single window may be dupli-

cated and deleted using the operations Cut, Copy, Paste, and Clear. For instance, applying

the Copy operation to a subsystem node involves the copying of all objects and depen-

dencies associated with that subsystem including modules, interfaces, versions, and source

documents. The Copy operation enables a subgraph to exist in multiple subsystems simulta-

neously, as is permitted in the (k; 2)-partite graph model. With a simpleCut operation, some



system components and their dependencies that are immaterial for the current investigation

can be removed from the current database. Thus, these basic editing operations a�ect the

underlying database.

One way to limit the time it takes to build system abstractions on top of an RFG is to

prune the initial database as much as possible using a sequence of Cut or Clear operations.

5.1.2 Zooming and �ltering

The Rigi system provides a variety of zooming, �ltering, and grouping facilities allowing

users to navigate swiftly through the myriad objects and dependencies and to identify and

aggregate pertinent information threads quickly. For instance, the Rigi editor o�ers node

and edge type �lters for focusing on individual semantic networks or contexts (i.e., a graph

whose nodes and edges are members of a single node and/or edge type, respectively) or

combinations of individual contexts. Thus, one can easily focus on the dependencies of a

certain type of nodes (e.g., data types) by invoking a node type �lter.

The zooming and �ltering operations do not a�ect the underlying database. They simply

allow the user to impose di�erent views on the entities of the repository, �lter unnecessary

details, and alter focus.

5.1.3 Searching

The search commands include grepping (string search using regular expressions as supported

by the UNIX operating system) for string patterns in node labels. The graph editor supports

the logical renaming of node labels; their initial value is extracted from the source code by

the parsing system during the �rst stage of reverse engineering (for low level artifacts such

as functions and data types), or is supplied by the user interactively. Filters and graph

traversal techniques are also used to constrain the search space. For example, the search

space can be restricted to a �xed set of node classes (e.g., modules and subsystems) or to

the forward and/or backward dependency trees starting from a designated node.



5.1.4 Collapsing

Collapsing is a form of graph transformation for de�ning and composing subsystem struc-

tures. The collapse operation essentially replaces a subgraph (a set of components at some

level of a given (k; 2)-partite graph) by a single node (a subsystem). All the collapsed com-

ponents are pushed to the next (more detailed) level of the subsystem hierarchy. Its inverse

operation restores the original graph. To make this operation completely reversible, the

subgraph and the edges between the subgraph and the remaining graph have to be restored.

After collapsing takes place, the exact interfaces are propagated as follows: for each col-

lapsed node v, compute its exact interface by computing the exact interface of the subgraph

that was collapsed to form v. For instance, if S is the collapsed subgraph, then the pair

ER(S; V �S) and EP (S; V �S) is computed. Note that the exact provisions of a subsystem

are often a subset of the objects provided by all of its components. Consequently, subsys-

tems can encapsulate large interfaces and provide a considerably smaller set of objects to

the remainder of the system (i.e., a small interface).

5.2 Subsystem Composition Operations

We now have su�cient machinery to describe some of the subsystem composition operations

provided by the Rigi system. These graph operations are self-contained and e�cient and can

therefore be invoked individually and interactively through the Rigi user interface. Given a

(layered) resource-
ow graph, composition operations can be used to identify subgraphs with

desired properties. Such a subgraph can then be collapsed: replaced by a newly created node

representing a subsystem. The parameterized composition measures introduced in Section 4

are usually used in the composition process and are designed to improve the overall quality

of subsystem structures by promoting low coupling and strong cohesion. Note that the

composition operations are not transitive in general and thus di�erent subsystem structures

may result depending on the order in which composition and collapse operations are applied.

However, since subsystem identi�cation and subsystem composition are two distinct steps,



the collapsing of individual subsystems can be delayed until the user is satis�ed with the

arrangement of a particular layer.

5.2.1 Remove omnipresent nodes

This is a parameterized operation designed to �lter the noise at the initial stages of the

subsystem composition process. For each node v 2 V in a resource-
ow graph G = (V;E),

let c(v) be the number of direct clients of v. If c(v) is greater than the omnipresent threshold

Top; then v is said to be omnipresent. Because omnipresent components obscure system

structure, they are often removed from an RFG together with all their incident edges (by

cutting or �ltering). An example of an omnipresent node is a debugging module containing

debug variables or routines that are referenced by most other modules.

5.2.2 Compose by interconnection strength

This composition operation is based on the interconnection strength measure IS(v;w) de-

�ned between any two subsystems v and w. The user can interactively adjust two parameters,

Th and Tl, which represent high and low-strength threshold values, respectively, to guide the

identi�cation process. Depending on the value of IS(v;w); one of the following three clauses

applies.

� IS(v;w) � Th

In this case, v and w are strongly coupled and thus can be collapsed into the same

subsystem.

� IS(v;w) � Tl

In this case, v and w are loosely coupled and thus can be assigned to two separate

subsystems.

� Tl < IS(v;w) < Th

Node pairs in this category are neither strongly nor loosely coupled; they can be



assigned to the same subsystem or separate subsystems.

5.2.3 Compose by common clients/suppliers

These composition operations are based on the common clients/suppliers measures de�ned

above. For each node pair v;w 2 V in an RFG G = (V;E), let CS(fv;wg) and SS(fv;wg)

be the common client and the common supplier subset, respectively. If the cardinalities of

these subsets are greater than or equal to their respective thresholds Tc and Ts (i.e., v and

w have either similar clients or similar suppliers and are thus siblings), then v and w are

assigned to the same subsystem.

5.2.4 Compose by centricity

This composition operation is parameterized by Tk and Tf , representing the connectivity

threshold values for identifying central (key) and fringe components. Given a component

v 2 V in an RFG G = (V;E); the external strength of v, ES(v), is de�ned as the sum of

(the cardinality of) the weights of all the edges between v and all the other components in

the RFG that are not subsumed by v through composition dependencies. A node v is said

to be a central component if ES(v) � Tk and similarly a fringe component if ES(v) � Tf .

Central and fringe components are normally assigned to separate subsystems. Identifying

central components is critical for change and risk analyses, because a small chance in a

central component may a�ect a large number of other components.

5.2.5 Compose by name

This composition operation is implemented using the standard Unix regular expression pat-

tern matching engine and is used to identify objects with similar names. For each node v 2 V

in an RFG G = (V;E); search its module, �le, and/or path name for common substrings

(e.g., a common pre�x). Composition by name is particularly useful during reverse engineer-

ing if the designers of the subject system have adhered to naming conventions which might



have been recorded in a design document. However, this composition strategy should be

used with care, as it can also identify sets of totally unrelated components due to accidental

string matches.

6 A CASE STUDY

In this section, we illustrate our reverse engineering approach by analyzing a 30-module

software system written in C, a ray-tracing rendering system (Corrie, 1990). The ray tracer

creates a two-dimensional image of a three-dimensional scene by simulating how light inter-

acts with the objects located in the scene. The purpose of this analysis is to show how the

Rigi system can be used on real-world software systems to identify and compose subsystems,

maximize data and control encapsulation qualities within subsystems, and to minimize the

number and size of the interfaces among subsystems.

To generate an initial resource-
ow graph (RFG), the C source code of the ray tracer,

which is kept in multiple directories, is parsed to extract data type and function dependencies

automatically. The subject system consists of 265 C objects (functions and data types) and

369 dependencies among these objects (data dependencies and function calls). The initial

RFG is stored in the repository as a (k; 2)-partite graph and is then maintained as such by

the database server. The user then browses, modi�es, and analyzes the graph structures

through the Rigi editor. Using the composition operations provided by the Rigi editor,

subsystem hierarchies are then built interactively on top of the 
at RFG and exact interfaces

are computed.

The threshold values presented above can be combined in numerous ways to obtain a

variety of subsystem composition alternatives. When discriminating among alternatives, the

Rigi software quality measures can be used as a guide (M�uller, 1990). The rough compositions

can then be �nely tuned by adjusting individual nodes and edges while observing the e�ect

on the quality measures. However, in the following analysis the focus is on subsystem

composition methods and how they are used in a bottom-up fashion to expose the overall



architecture of the ray tracer.

6.1 The Overall Picture

The top two levels of the subsystem hierarchy corresponding to the top two layers in the

constructed (k; 2)-partite graph are depicted in Figure 3. The ray tracer consists of two

main subsystems: Ray Tracer and Shader Library. Ray Tracer performs the ray tracing

rendering process whereas Shader Library provides the basic library routines for shading

geometric objects.

The subsystem Ray Tracer consists of four subsystems: Control|the top level of the

function call hierarchy; Initialization|a small subsystem for setting up various parame-

ters and starting up the graph editing environment; Ray|the basic ray tracing and rendering

subsystem; and Utilities|all the basic data types, their access functions, and some other

primitive operations.

The subsystem Shader Library also consists of four subsystems: SL Shader|the shad-

ing of objects with di�erent surface characteristics; SL Light|operations on lighting models;

SL Primitives|the primitive data types and their access functions required by the shading

operation; and SL Utilities|auxiliary shading operations. Our analysis has revealed that

a considerable number of functions in Shader Library are not actually being used by Ray

Tracer; the system is still under development, and the shading method is not quite so so-

phisticated as to require all of the functionality provided by Shader Library. The designer

of the ray tracer veri�ed our �ndings.

The complete subsystem hierarchy of Ray Tracer is depicted in Figure 4. The four

nodes at the second layer correspond to the four main subsystems of Ray Tracer as de-

scribed above, and the leaf nodes correspond to functions and data types that are de�ned

in the source code. Our analysis has shown that there are few cross references between the

subsystems Ray Tracer and Shader Library, and that the system is almost tree-structured.

The subsystem hierarchy of Ray Tracer consists of six layers. At the lowest level are the



primitive data types and their access functions (methods). At the fourth and �fth layers,

leaf nodes represent a number of common library routines and system-de�ned data types.

The subsystem hierarchy of Shader Library consists of only four layers. Again at the

lowest level are the primitive data types and their access functions for shading geometric

objects. In total, 170 objects and over 287 dependencies are encapsulated in Ray Tracer,

and approximately 95 objects and 72 dependencies are encapsulated in Shader Library.

The number of layers required in the hierarchy for Ray Tracer (together with the number

of objects and dependencies absorbed in it) is also indicative of the complexity of the ray-

tracing rendering process (the heart of the ray tracer.) We found that a shallow subsystem

hierarchy with four layers was enough to fully understand and convey the overall structure

and functionality of Shader Library, which is evidently less complex than that of Ray

Tracer. Moreover, Shader Library has an almost strict tree hierarchy with little interaction

among its loosely coupled components.

With the Rigi editor, exact interfaces can be automatically computed for any collection

of system components and/or dependencies. For instance, the computed exact interface for

the subsystem Ray Tracer is shown in Figure 5. Note that the object under scrutiny is

highlighted in reverse video. The exact interface for Shader Library is also exposed in

the �gure because of the symmetry between the two subsystems. Ray Tracer requires �ve

objects from Shader Library and provides �ve objects to it; a total of ten objects (seven

functions and three data types) is exchanged between the two subsystems. Ray Tracer also

internalizes 287 objects (i.e., it localizes 287 dependencies among its components).

As shown in the Control Panel window at the top of Figure 5, we set the high threshold

value for interconnection strength to �ve, which means that two components at the second

level of the subsystem hierarchy are considered strongly (loosely) coupled if their intercon-

nection strength is greater (less) than �ve. This setting indicated that there are two medium

strength interfaces, but no high strength or low strength interfaces. Although at higher levels

of the subsystem hierarchy interfaces generally tend to absorb more than �ve dependencies,

we felt that for a medium-sized software system such as the 30-module ray tracer, �ve was



a realistic number for interconnection strength. Therefore, we can claim that the software

engineering principle small interfaces among components is satis�ed. Moreover, most of

the control and data dependencies are absorbed within the two subsystems, indicating the

software engineering principle high strength within subsystems is also satis�ed.

6.2 Composition Process

The subsystem composition methodology as supported by the Rigi system is designed to be


exible. The software engineer can experiment with and realize various identi�cation and

composition strategies by applying the operations in di�erent orders and by adjusting the

various thresholds. In this section, we give a more detailed, step-by-step account of how the

�nal subsystem structure of the ray tracer outlined in the preceding section was derived.

6.2.1 Filtering the noise

The starting point is the initial RFG of the ray tracer generated by the parsing system. The

entire graph is displayed in one window with object and dependency types represented by

di�erent icon and line patterns. This graph looks more complicated than it really is because of

the noise introduced by dead code and some omnipresent objects such as debugging and error-

reporting functions. The dead code is easily identi�ed by adjusting the fringe component

threshold Tf to zero. This connectivity threshold is used to identify those components whose

connectivity (the total number of direct suppliers and/or clients) is less than or equal to the

threshold value. Figure 6 highlights the unused code in the Ray Tracer subsystem. A total

of 68 functions and data types is identi�ed as unconnected and thus as unused objects in

the Ray Tracer and Shader Library subsystems as a result.

The error-reporting function rayerror is identi�ed by adjusting the omnipresent thresh-

old Top to a fairly high value. All the identi�ed objects do not contribute much to the actual

structure of the system. However, it is most likely that some central components are also

going to be identi�ed in a similar fashion. Therefore, we cannot blindly remove all the iden-



ti�ed components; further inspection is needed. In our case, the functionality of rayerror

is clear, and hence we can discard it with con�dence.

After removing the dead code along with rayerror and its incident arcs (all 33 of them),

we arrive at a much cleaner graph. Note that dead code is not physically removed from the

database of the source code, just its representation in the current view.

6.2.2 Composition by name

We observe that a signi�cant number of data types and functions have the common pre�x

SL. A cursory examination of the source text of these objects reveals that they all share the

common feature of providing the basic functionality required for shading geometric objects.

Therefore, all functions and data types whose names begin with either an \SL" or \sl" pre�x

(a total of 95 objects) are collapsed into the Shader Library subsystem. The remaining

objects including their dependencies are collapsed to form subsystem Ray Tracer.

After carefully examining the resulting subsystem structure and inspecting the source

code, we did not detect any accidental couplings of objects that do not seem to belong to

subsystem Shader Library. Encouraged with this observation and the fact that the two

main subsystems communicate through a small-sized interface, we conclude that the designer

of the ray tracer had in fact two main subsystems in mind. In short, we were able to identify

a likely top-down design decision by means of a bottom-up strategy; we created a system

decomposition by subsystem composition.

The two main subsystems are further decomposed into smaller subsystems using addi-

tional composition-by-name operations.

6.2.3 Encapsulating data types

To facilitate data encapsulation at the lower levels of the subsystem hierarchy, we try to

identify the basic data types provided in the system, such as primitive geometric objects, and

group these data types with their access functions. This strategy is based on the assumption



that the functionality of a given data type is better understood in the proper semantic

context.

For example, we can select the Polygon data type and apply the select incoming neighbors

operation on data arcs. As exhibited in Figure 7, this operation identi�es all the functions and

data types that depend on Polygon. Note that all direct clients of Polygon are highlighted.

The visual inspection of the selected data types and functions as well as their source code

suggests that these objects really form an abstract data type and thus constitute a subsystem.

However, there might be additional functions that logically belong to this abstract data type,

but syntactically do not access the data type. Indeed, three extra functions are found in

the dead code with a common pre�x \Polygon." These functions are currently not used by

any other function, but have apparently have been written so that the abstract data type

provides a logically complete set of operations. There are two more functions whose names

contain the string \Polygon," but further inspection of the source text reveals that they do

not actually belong to the Polygon subsystem.

We also identify two other subsystems that are very similar to Polygon with respect

to structure (i.e., data type with analogous access functions): Sphere and Quadric. This

investigation shows nicely how the system can be extended to support the rendering of

additional geometric primitives (e.g., SuperQuadric).

However, we realize that encapsulating data types is not always a winning composition

strategy, especially for those data types that are used by many unrelated functions without

any uniform pattern or for system-de�ned data types. Without the aid of the browsing and

analyzing capabilities of the Rigi editor, it would be tedious to verify that these data types

and their dependencies obscure the overall structure of the system and collapsing them into

subsystems would not be worthwhile for a better understanding of the system. In fact, these

data types and their dependent functions are candidates for re-engineering for the purpose

of simplifying the design of the ray tracer (especially that of the Ray Tracer subsystem.)



6.2.4 Composition by common clients/suppliers

We observe that some of the functions are not tied together by any data types. Thus, as a

next step we look for functions that are used by common clients or have common suppliers.

By adjusting the corresponding threshold values Tc and Ts, we can search for potential

subsystems and inspect their structures.

For instance, when the threshold values are quite small (two or three), a number of

functions that perform some matrix operations also share the common pre�x \Matrix."

Further inspection reveals that these operations depend on a few vector operations that are

also identi�ed, but not required by any other object in the system. The vector operations

are apparently implemented as lower-level library routines for matrix operations. The e�ect

of subsystem identi�cation by common clients/suppliers measures is shown in Figure 8.

By collapsing the vector operations as a new subsystem into the Matrix subsystem, more

control dependencies are absorbed and the number of interfaces is reduced. Some other func-

tions identi�ed by the common pre�x Matrix (shown in the lower left corner in Figure 8) are

also collapsed into Matrix. However, we observe that the number of dependencies within

Matrix is small; therefore, Matrix has low internal strength. Note that not all of the identi-

�ed functions are collapsed into Matrix (e.g., ReadView, which belongs to an Input/Output

library, is not included).

6.2.5 Finishing touches

As we repeat the composition strategies discussed above (and some others that have not been

mentioned in this paper), Shader Library takes its �nal form. As for Ray Tracer, we use

composition by interconnection strength and composition by centricity at the top levels (as

well as visual inspection of graphs and source text in some cases) to group relatively small

subsystems together. They form higher-level subsystems that reduce the number of interfaces

among subsystems. Again, we continually inspect the resulting subsystem structures to avoid

anomalies while adjusting the threshold values to arrive at the �nal software structure.



7 DISCUSSION

Our experiments with the ray tracer demonstrate that there is usually not a unique static

subsystem structure that serves all purposes. While the initial resource-
ow graph generated

by the parsing system is static and unique, the various investigation and composition facilities

provided by the Rigi system allow the user to explore many alternative subsystem hierarchies

and to simulate a variety of what-if scenarios.

For instance, the very �rst subsystem structure we came up with was not satisfactory; the

interfaces were large, and the heart of Ray Tracer, the Voxel subsystem, was not structured

with consideration to its interconnection strength, but rather to the data encapsulation

principle. Voxel contains a number of client functions and data types that depend on other

primitive objects and utilities. As a result, the overall subsystem structure was quite poor,

and did not provide much help for fully understanding the architectural design of the ray

tracer. In the end, we realized that the composition of Voxel should be delayed until after all

the basic subsystems are formed, and aside from a few related primitive operations and small

subsystems, interconnection strength should be used in determining the perimeter of Voxel

(i.e., what objects and dependencies belonged to it outside of the Voxel's core objects.)

In our opinion, a user who is unfamiliar with the ray tracer, but familiar with the Rigi

editor, can easily build a subsystem hierarchy comparable to the one described in this ar-

ticle. Other members of the Rigi project repeated the described experiment and arrived at

comparable subsystem hierarchies.

While the extraction of the resource-
ow graphs and the computation of the exact in-

terfaces is fast, the semi-automatic, interactive subsystem composition may take from a few

hours for a 30-module system, such as the ray tracer, to a few days for a system consisting of

a hundred modules. Nevertheless, considering the size of the source code for the ray tracer

(approximately 12,000 lines) this semi-automatic procedure is considerably faster than a

comparable manual construction of subsystem structures.

Rigi also provides incremental algorithms so that new and updated modules can easily be



integrated with the current software model. Therefore, once a system is reverse engineered

using Rigi, the recovered system abstractions can quickly be brought up-to-date by only

processing the changed modules, and by analyzing the a�ected modules through exact inter-

faces. This process is fully automatic; components and dependencies are updated correctly

without destroying the created subsystem structures. Hence, the database and the software

structures can be kept current at minimal time and cost.

During the process of subsystem composition, composition strategies based on software

engineering principles should be followed; it is assumed that the same principles are adhered

to during software development. However, the strategies should be constantly revised and

�nely tuned to the di�erent requirements at di�erent levels of abstraction in the subsystem

hierarchy. For instance, in our experiment, encapsulating data types is naturally used as

a composition strategy at the lower levels of the hierarchy. Moreover, what works for one

system does not necessarily work for another, and the choice of the correct strategy depends

on the problem domain as well. Therefore, one should be prepared to experiment with


exible tools such as Rigi and use all available information that might help in discovering

the structural and functional properties of a given system.

8 RELATED WORK

Reported module or subsystem partitioning and clustering methods typically embody some

form of inter-module measures. A partitioning method based on interconnection strength

was proposed by Choi and Scacchi (1990). The objective in their approach is to obtain

a subsystem decomposition with minimal coupling and minimal alteration-distance among

modules. They compute the articulation points and the biconnected components of the

module graph and then build a composite, hierarchical directed acyclic graph by assigning

a subsystem to each detected articulation point and each biconnected component. Their

partitioning method is incorporated in SOFTMAN, an environment for forward and reverse

engineering (Choi and Scacchi, 1991).



Kaiser, Maarek, and Perry use partitioning and clustering methods for change analysis

in the Infuse system (Kaiser and Perry, 1987; Perry and Kaiser, 1988; Maarek and Kaiser,

1988). Infuse clusters the set of modules involved in a change into a hierarchy of experimental

databases where the hierarchy controls the integration of changes. Their rationale is based

on the premise that the probability of an interface error between two modules is proportional

to the modules' interconnection strength.

Belady and Evangelisti (1982) use data bindings to form a 
at module graph out of

procedures. A data binding is an ordered triple (p; x; q) where p and q are procedures and x

is a variable within the static scope of both p and q. Hutchens and Basili (1985) extended

this approach to produce dendograms (hierarchies of modules). Selby and Basili (1988) also

use cluster analysis based on data bindings to localize errors and to identify error-prone

system structures.

Schwanke and Plato� (1989) recently outlined a clustering measure based on shared

neighbors for their ARCH environment. They use this measure for summarizing call graphs,

splitting large include �les, and improving system modularity (Schwanke, 1991).

Newbery and Tichy (1990) developed EDGE, an extendible directed graph editor, which

is similar to our Rigi editor. Newbery (1989) also proposed a graph-theoretic approach to

the problem of reducing the complexity of a directed graph. She computes edge clusters as

opposed to node clusters.

Rigi incorporates many features typically found in hypertext systems. Fletton and Munro

(1988) exploit hypertext technology for (re)documenting software systems. Garg and Scacchi

(1990) use a hypertext system to manage all software life-cycle documents. Instead of (k; 2)-

partite graphs, Ossher (1984) uses Grids as a skeleton for representing software systems.

9 CONCLUSIONS

When composing subsystem structures, software engineers make intuitive or subjective deci-

sions based on experience, skill, and insight which cannot and should not be fully automated.



However, subsystem composition methods are objective with respect to a given similarity

measure, but usually take only one measure into account at a time. Providing an expert de-

signer with a selected set of clustering methods through a 
exible tool such as Rigi therefore

presents a viable solution.

In 1990, we applied our reverse engineering methodology to a 57,000 line COBOL pro-

gram, the Practice Manager by Osler Management Inc. of Victoria (M�uller et al., 1990). The

Practice Manager is a comprehensive system for the management of physicians' practices in

British Columbia, Canada. The purpose of the analysis was to build up-to-date subsystem

structures, to assess the quality of the entire system with respect to ease of maintenance,

and to identify subsystems that are candidates for re-engineering.

In 1991, we analyzed an 82,000 line physics program, a control and data logging ap-

plication written in C for the isotope separator experiment at TRIUMF (TRI-University

Meson Facility) in Vancouver, British Columbia. The main objective for this analysis was

to identify components for re-engineering; in particular, abstract data types.

We are currently analyzing a large commercial database management system in coop-

eration with the Centre for Advanced Studies, IBM Toronto Laboratory. The goal of this

investigation is to construct current architectural diagrams at various levels of detail of this

multi-million line system.
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Figure 1: Architecture of the Rigi system
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Figure 2: Directed (k; 2)-partite graph



Figure 3: An overview of the ray tracer



Figure 4: The subsystem hierarchy for subsystem Ray Tracer



Figure 5: The exact interface for subsystem Ray Tracer



Figure 6: Dead code in subsystem Ray Tracer



Figure 7: Abstract data type Polygon



Figure 8: Subsystem identi�cation by common clients/suppliers measures


