
Domain{Retargetable Reverse Engineering III:

Layered Modeling

Scott R. Tilley

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890
stilley@sei.cmu.edu

Abstract

This paper describes ongoing work on a domain-

retargetable reverse engineering environment which is

used to aid the structural understanding of large in-

formation spaces. In particular, it presents a layered

modeling approach to representing three classes of ar-

tifacts manipulated during the reverse engineering pro-

cess. The approach provides a practical and extensi-

ble method of integrating existing tools and techniques

into a reverse engineering environment by leveraging

results from other areas, such as relational databases,

hypertext, and conceptual modeling.

Keywords: domain-retargetable, modeling, reverse

engineering.

1 Introduction

Reverse engineering technologies can be used to aid

hyperstructure understanding (HSU): identifying arti-

facts and understanding their structural relationships

in complex information webs. HSU is an objective

rather than a well-de�ned process [1]. The pre�x hy-

per is used to distinguish HSU from the in-the-small

activity of understanding the internal structure of any

single artifact; the focus is the analysis of overall sys-

tem structure.

When any entity increases in size by several orders

of magnitude, it changes in nature as well as in size

[2]. When one attempts to understand a large body

of information, the overall structure of the information

space is just as important as the inner structure of any

single artifact|if not more so. This is especially true

when the number of artifacts in the domain is much

larger than the size of each artifact.

Decomposition has long been recognized as a pow-

erful tool for the analysis of large and complex sys-

tems. The technique of decomposing a system, study-

ing the components, and then studying the interac-

tions of those components has been used successfully

in many areas of engineering and science [3]. For

example, in the software engineering domain, mod-

ularization is a technique used to manage complexity

by decomposing a large problem into several smaller

ones. It can lead to simpler system structure, but

it is not a panacea. It can lead to a proliferation

of small parts; so much so that it is di�cult to un-

derstand their inter-relationships [4]. Since good soft-

ware engineering design suggests that modules be kept

relatively small, the number of modules in a large

system is signi�cant [5]. For instance, in a system

of 500,000 lines, with roughly 200 lines per module,

there would be 2,500 modules|an order of magni-

tude more than there are lines of code in each module.

At this scale, the understanding problem goes beyond

the algorithms and data structures of computation. It

moves into the realm of architecture and HSU: deter-

mining what modules comprise the system, how they

are organized, and how they interact [6].

HSU involves inverse domain mapping. For ex-

ample, in the program understanding domain, pro-

grammers make use of programming knowledge, do-

main knowledge, and comprehension strategies when

attempting to understand a program. They extract

syntactic knowledge from the source code and rely

on programming knowledge to form semantic abstrac-

tions. To aid HSU, a reverse engineering environment

must make this inverse mapping process easier by re-

covering lost information and making implicit infor-

mation explicit.

The HSU process manipulates three types of

\artifacts:"1 (1) data: the factual information used

1The de�nitions used here are in accordance with Webster's

online dictionary.



as a basis for reasoning, discussion, or calculation;

(2) knowledge: the sum of what is known and rep-

resents the body of truth, information, and principles

acquired; and (3) information: the communication or

reception of knowledge obtained from investigation,

study, or instruction. Based on these de�nitions, we

can identify three canonical reverse engineering opera-

tions: (1) data gathering; (2) knowledge organization;

and (3) information navigation, analysis, and presen-

tation.

The Rigi2 reverse engineering environment directly

addresses each of these canonical activities. It does

so by stratifying its support for each artifact cate-

gory. It leverages existing technologies where appli-

cable through a 
exible tool integration mechanism.

This approach enables the environment to build upon

existing expertise and avoid \reinventing the wheel."

For example, the traditional approach to data gath-

ering in a reverse engineering environment for program

understanding is to parse the subject system's source

code and extract complete abstract syntax trees with

a large number of �ne-grained syntactic objects and

dependencies. To accomplish this, many researchers

have spent an inordinate amount of time building

parsers for various programming languages and di-

alects [8]. However, there already exists mature tech-

nology in the compiler arena to parse source code, per-

form syntactical analysis, and produce cross-reference

and other information usable by other tools, such as

debuggers. Rigi provides a simple mechanism to in-

corporate this data into the environment.

The next section describes the layered modeling

paradigm. Section 3 outlines the support provided

for layered modeling as part of the Rigi reverse en-

gineering environment. Section 4 illustrates the use

of layered modeling in two application domains: on-

line documentation and program understanding. Sec-

tion 5 summarizes the paper and brie
y discusses fu-

ture work.

2 Domain modeling

A domain is a problem area [9]. A domain model is

a representation that captures the structure and com-

position of artifacts within a domain [10]. It may be

constructed through domain analysis: the process of

identifying, organizing, and representing the relevant

information in a domain [11]. In fact, the construction

of the domain model can precede reverse engineering

(in which case it is used to guide the understanding

2In this paper, \Rigi" refers to version V of the Rigi reverse

engineering environment [7].

process by supplying expected constructs), or it can be

constructed during reverse engineering (if no previous

knowledge about the domain was available). These

two uses of domain models, as a guide to and as a

product of reverse engineering, respectively, can also

be combined in an iterative manner to support ex-

ploratory understanding.

A successful approach to reverse engineering must

allow di�erent domain models to be speci�ed for dif-

ferent target domains. \Domains" in this sense is an

over-burdened term. It includes di�erent application

domains, such as database systems, health informa-

tion systems, and online documentation systems; im-

plementation domains, including the application's im-

plementation language; and the reverse engineering

domain, in which the user applies reverse engineering

to the problem of HSU.

During reverse engineering, artifacts must be put

into a representation that facilitates e�cient storage

and retrieval, permits analysis of the artifacts and

their relationships, and also re
ects the users' per-

spective of the subject system's characteristics. These

(sometimes con
icting) requirements suggest that a

single technique for representing the di�erent domains

and the di�erent categories of artifacts may not always

be suitable. In its place, a layered approach to do-

main modeling may be used. For each type of artifact

manipulated during each canonical reverse engineering

activity, a di�erent model may be used. The advan-

tage of such an approach is that di�erent technologies

may be used to their strengths, while avoiding their

weaknesses. For example, a relational model may be

used for physical storage, a semantic network model

for interactive exploration, and a conceptual model for

representing domain-level information.

2.1 Data

Gathering data from the subject system is an es-

sential step in reverse engineering. The raw data is

used to identify a system's artifacts and relationships.

Without it, higher-level abstractions cannot be con-

structed. For HSU, gathered data must be put into

a representation that facilitates e�cient storage and

retrieval, permits analysis of the artifacts and rela-

tionships, and yet re
ects the users' perspective of

the subject system's structure. This requirement|the

need to organize data in some well-de�ned and rigor-

ous manner|led to the development of data models

[12].

A data model captures the properties of an appli-

cation needed to support the desired data-related pro-

cesses. The result of data modeling is a representa-



tion that has two components: (1) static properties

that are de�ned in a schema; and (2) dynamic proper-

ties that are de�ned as speci�cations for transactions,

queries, and reports. A schema consists of a de�ni-

tion of all application object types, including their at-

tributes, relationships, and static constraints. Corre-

sponding to the schema is a data repository called a

database, an instance of the schema. A data model

provides a formal basis for tools and techniques used

to support data modeling.

The three best-known classical data models are the

hierarchical data model, the network data model, and

the relational data model [13]. The hierarchical data

model is a direct extension of a primitive �le-based

data model; data is organized into simple tree struc-

tures. The network model is a superset of the hierar-

chical model; the objects need not be tree-structured.

The relational model is quite di�erent from the hierar-

chical or network model; it is based on the mathemat-

ical concept of a relation (a set of n-tuples), and orga-

nizes data as a collection of tables. All three classical

data models are instances of the record-based logical

data model.

2.2 Knowledge

Although well-suited to a computer environment,

record-oriented data models are often semantically in-

adequate for modeling the application environment.

They are highly machine-oriented and are organized

for e�ciency of storage and retrieval operations; ease

of use for the non-programmer is of secondary im-

portance. Typically, only two levels of abstraction

are provided: the database schema, and the actual

collection of records. There are no provisions to ex-

tend the levels to a more general hierarchy of types,

meta-types, and instances, even though this extension

would increase the model's expressive power and pro-

vide a mechanism which supports the reuse of com-

mon properties. The hierarchical and network models

also do not support semantic relativism, which is the

ability when modeling a system to view the elements

and concepts representing it from di�erent perspec-

tives depending on the application. In particular, the

concepts of entity, relationship, and attribute should

be interchangeable. For these reasons, the classical

data models are also known as syntactic data models.

The lack of abstraction mechanisms provided by the

classical data models is particularly troublesome from

an HSU point of view. Abstraction is a fundamen-

tal conceptual tool used for organizing information. It

plays a key role in managing one of the fundamen-

tal problems with large-scale systems: coping with

complexity [14]. When modeling such systems, the

number of objects and relations in the knowledge base

can grow very large. A large knowledge base|like

a large software system|needs organizational princi-

ples to be understandable. Abstraction mechanisms

such as classi�cation (instance-of), aggregation (part-

of), and generalization (isa-a) serve as organization

axes for structuring the knowledge base [15]. Without

them, a knowledge base can be as unmanageable as a

program written in a language that has no abstraction

facilities.

Conceptual modeling [16] is one approach to allevi-

ating some of the de�ciencies inherent in the classical

data models. It is the activity of formally describing

aspects of some information space for the purpose of

understanding and communication. The fundamen-

tal characteristic of conceptual modeling is that is it

closer to the human conceptualization of a problem do-

main than to a computer representation of the problem

domain [17]. The emphasis is on knowledge organi-

zation (modeling entities and their semantic relation-

ships) rather than on data organization. The descrip-

tions that arise from conceptual modeling activities

are intended to be used by humans|not machines.

Concepts in a conceptual model are indexed by their

semantic content. This di�ers from other data mod-

els, such as relational, where the indexing scheme is

geared more towards optimal storage and information

retrieval from the implementation perspective. This is

one of the main reasons that conceptual modeling is

eminently suited to HSU: the focus on the end user is

paramount.

2.3 Information

Information processing represents the most impor-

tant of the three canonical reverse engineering activ-

ities. While data gathering is required to begin the

reverse engineering process, and knowledge organiza-

tion is needed to structure the data into a conceptual

model of the application domain, without the �nal

step of information navigation, analysis, and presen-

tation, there would be no bene�t to HSU. The user

navigates through the hyperspace that represents the

information related to their application, analyzes this

information with respect to domain-speci�c evaluation

criteria, and uses various presentation mechanisms to

clarify the resultant information. A general-purpose

semantic network, represented as an attributed graph,

is well suited to representing such structured sets of

artifacts [18].

In its most basic form, a semantic network rep-

resents knowledge in terms of a collection of objects



(representing concepts) and binary associations (rep-

resenting binary relations over these concepts). Ac-

cording to this view, a knowledge base is a collection

of objects and relations de�ned over them [19]. The

semantics of the model are a careful de�nition of the

meaning and usage of the nodes and arcs. Modi�ca-

tions to the knowledge base occur through the inser-

tion or deletion of objects and the manipulation of

relations.

The use of a network model has at least three ad-

vantages related to navigating, structuring, and vi-

sualizing the knowledge base. The �rst advantage is

that the network structures that encode information

may themselves serve as a guide for information re-

trieval [20]. The association between artifacts de�nes

implicit access paths. Using this model, the informa-

tion space is indexed by neighborhoods, while artifacts

are retrieved through navigation guided by spatial and

visual proximity cues.

The second advantage is the use of the organiza-

tional principles described in Section 2.2 to structure

the knowledge base. Such abstraction mechanisms

capture the natural structure of the artifacts in the

system, their properties, and the relationships among

them. They can also be used recursively to construct

abstraction hierarchies. These structuring aids can be

represented in the semantic network by typing both

the nodes and the arcs.

The third advantage is that network representation

schemes lend themselves to a graphical notation that

can be used to depict knowledge bases and increase

their understandability. Most human beings visualize

structure graphically. For examples, designers often

describe system architecture using block diagrams of

the major system components and labels that refer

to their major functions. Modern interactive systems

with graphical display capabilities facilitate the direct

manipulation, processing, and presentation of infor-

mation in graphical form. As discussed in the next

section, this is the approach taken in the Rigi environ-

ment.

3 Supporting layered models

To support domain-retargetability, Rigi IV (the

Rigi reverse engineering environment circa 1992) has

been reengineered into Rigi V through a three-step

process. The �rst step was to make the central com-

ponent (rigiedit) programmable through the addition

of a scripting language [21]. The second step was to

make the user interface customizable [22]. The third

step was to integrate the layered modeling paradigm

discussed in Section 2 into the environment.

Rigi V is a prototype realization of the PHSE:3

an architecture for a meta reverse engineering envi-

ronment [23]. It provides a basis upon which users

construct domain-speci�c reverse engineering environ-

ments. It is instantiated for a particular application

domain by specializing its conceptual model, by ex-

tending its core functionality, and by personalizing its

user interface.

Layered modeling is directly supported in the PHSE

(and thus in the Rigi implementation). The relational

data model is the foundation upon which the concep-

tual model is constructed. The conceptual model rep-

resents domain knowledge; it acquires its semantics

when the abstract conceptual model is further re�ned

to re
ect a particular application domain. A seman-

tic network information model is used to represent se-

lected artifacts of the subject system; this layer forms

the core of the graphical interface to the underlying in-

formation space. The mechanisms used for each layer

are outlined below.

3.1 Data

The data model is implemented as a store of binary

relations, similar to the mechanism used by Beynon-

Davies et al [24]. The binary relations that represent

the database are stored in one or more �les as a series

of RSF (Rigi S tandard Format) triples. Each triple is

of the form type subject object. The interpretation of

this relation is straightforward: a directed relation of

the type `type' is asserted between the subject and the

object. Using this simple binary mechanism, both in-

tensional and extensional information are represented.

Intensional information de�nes the structure of the in-

formation (the schema of the knowledge base, inter-

preted as meta-data), while the extensional informa-

tion comprises the actual occurrences of relationships

(the instance of the knowledge base; interpreted as

data).

For example, in the program understanding do-

main, the RSF triple call foo bar might indicate the

existence of a call relationship between the function

foo and the function bar. Likewise, the RSF triple

in function foo could indicate that foo is an instance

of the function class. Other structuring mechanisms

(discussed in Section 2.2) can also be represented as

RSF triples (for example, aggregation using member

and specialization using isa).

Since every n-ary relation can be expressed as a con-

junction of n+1 binary relations [25], the RSF mech-

3The acronym PHSE, pronounced \fuzzy," stands for

Programmable HyperStructure Editor.



anism is su�cient to store the data required by the

reverse engineering environment. Its simplicity also

permits the facile translation to and from other data

formats (such as Prolog facts), the incorporation of re-

trieval improvement techniques (such as inverted lists

or B-trees), and the integration of dedicated tuple en-

gines (such as qddb [26]) into the reverse engineering

toolset.

3.2 Knowledge

The language Telos [27] was chosen for the knowl-

edge modeling layer. Telos was selected over other con-

ceptual modeling languages because it is more expres-

sive with respect to attributes, it is extensible through

its treatment of metaclasses, and it has already proven

successful in other application domains. For example,

it has been used to provide a structural framework for

an authoring-in-the-large hypertext system [28], and

to perform requirements analysis in a software engi-

neering environment [29]. Moreover, an RSF represen-

tation of the knowledge base can be used to represent

all Telos propositions, from meta classes to tokens, in

a uniform manner.

The primitive units of Telos, individuals and at-

tributes, have a direct mapping to the primitive units

of hypertext, namely nodes and links. Furthermore,

attributes are treated as \�rst class citizens" when it

comes to the built-in domain-independent structuring

mechanisms for aggregating, classifying, and general-

izing artifacts. This results in a uniform framework

and provides solutions to some of the issues discussed

above.

Telos' meta-modeling facilities for describing struc-

tures unique to a domain means that it can represent a

wide variety of conceptual models. Although not used

in the current implementation, its assertion language,

integrity constraint mechanism, and deductive rules

for re�ning the structural knowledge of Telos, and its

facilities for representing and reasoning about tempo-

ral knowledge, can also provide additional bene�ts.

As illustrated in Figure 1, the abstract conceptual

model provided is relatively minimal, due in part to

the fact that Telos is used in its speci�cation. Telos

provides most of the modeling and knowledge orga-

nization facilities required; only a few extra artifacts

and attributes are needed. Users specialize this model

to represent domain-speci�c knowledge.

The central component in the abstract conceptual

model is the PHSEObject; everything is derived from

it. It is a SimpleClass object, an instantiation of the

PHSEObjectClass meta class, with two attributes: a

unique identi�er (the primary search key) and a set

of annotations. No other constraint is placed on a

PHSEObject. The only other special component is the

PHSEWeb, an unordered collection of PHSEObjects;

its use is discussed in Section 3.3.

3.3 Information

The information model used in Rigi is a special-

purpose semantic network, represented as an at-

tributed graph. In the model, both artifacts (repre-

sented as nodes) and relations (represented as arcs)

are specializations of the PHSEObject class. Modi�ca-

tions to the repository occur through the insertion or

deletion of artifacts and the manipulation of relations.

The information model consists of four objects:

webs, nodes, links, and attributes. A web is a subset

of the entire knowledge base that is related is some

fashion. It is composed of typed nodes representing

artifacts and typed arcs representing relations. Each

node has a set of incoming arcs and a set of outgo-

ing arcs. A node represents an artifact in the target

domain. Links between nodes represent relations be-

tween artifacts.

Nodes and links may exist simultaneously in one or

more webs. For example, in the program understand-

ing domain, a node representing a C++ function may

be part of a web of functions that call one another,

part of a web of member functions for a class, and

a web of overloaded functions. This permits object

sharing and facilitates multiple views of the data.

Object semantics are provided through user-de�ned

attribute/value pairs, which can be attached to nodes

or links. Attribute/value pairs permit the organization

of nodes and links into subgraphs and webs. For ex-

ample, subsets of objects may be extracted from large

graphs using �ltering mechanisms based on attribute

predicates.

Interrelated webs of objects form the cornerstone

of the information model. They are are manipulated

using rigiedit, a graphical, hypertext-oriented, multi-

window hyperstructure editor. Portions (or all) of

a web are viewed by the user as a neighborhood. A

neighborhood is simply a collection of artifacts that

are immediately accessible from the current perspec-

tive. It is graphically represented in the editor as a

single window containing the artifacts. Artifacts can

exist in any number of neighborhoods simultaneously,

since neighborhoods are simply dynamically computed

perspectives of the underlying knowledge base. This

permits multiple, co-existing views of the information

space. An example of rigiedit's use at the information

model layer are provided in the next section.



PHSEObject
PHSEWeb

SimpleClass

PHSEObjectClassMetaClass

attribute necessary single:id Integer
attribute:annotation Proposition

Figure 1: The PHSE abstract conceptual model

4 Using layered models

To illustrate the use of layered models within Rigi,

two application domainswill be used: online documen-

tation and program understanding. To aid the user,

default browsers are provided for each layer. The qddb

tuple engine may be used as a data model browser to

interrogate RSF streams. A graphical schema browser

may be used to view the knowledge layer's conceptual

schemas.4 Rigiedit is used to manipulate the infor-

mation layer. However, none of these tools are �xed;

because of the programmable nature of the environ-

ment, users may replace these browsers (and other

tools) with others of their own choosing [30].

4.1 Online documentation

Hypertext can be created from linearly organized

online documents by retargeting the environment to

support online information. The retargeting consists

of three steps: organizing knowledge by specifying a

domain model, gathering data via structural feature

extraction, and navigating, analyzing, and presenting

information by extending the editor. This section il-

lustrates the use of layered modeling in this process

using a representative LaTEX document. LaTEX was

chosen as the text markup language since LaTEX doc-

uments are in plentiful supply, and thus the approach

has immediate broad application.

The �rst step is the construction of the knowledge

layer through the speci�cation of a Telos conceptual

model representing the LaTEX domain. A graphical

representation of this schema is shown in Figure 2.

The model does not describe all of LaTEX, just those

features needed for illustration purposes. Nodes in

the LaTEX domainmodel represent document artifacts,

while links represent relations between these artifacts.

The second step is the construction of the data layer

through the gathering of LaTEX artifacts from the sub-

ject document. This is done by using a text parsing

4The schemas shown in Figure 1, Figure 2, and Figure 4 were

produced using this tool, which is based on a prototype from

the University of Toronto.

Artifact Icon representation

ndocument

npart

nchapter

nsection

nsubsection

nsubsubsection

npar

nbibliography

nbibitem

Table 1: LaTEX artifacts and their icons

system that extracts structure, relations, and actual

text from LaTEX source and emits these artifacts and

relations as an RSF stream. For example, LaTEX key-

words such as ncite produce a cite paragraph bibitem

tuple. The intention is not to duplicate the LaTEX

parser in its entirety, but simply to extract features of

relevance to HSU of online documents.

The third step is the manipulation (navigation,

analysis, and presentation) of the information layer,

which is a graphical representation of the gathered ar-

tifacts from the source document. The LaTEX artifacts

are represented in the editor by their respective icons,

as shown in Table 1. To illustrate this step, Figure 3

contains various views of the sample document. The

window at the top contains the main control widget.

The window at left represents the neighborhood of the

`root' of the document. The window on the right rep-



LatexObject

LatexNode

LatexCompositeNode

Document
Part
Chapter
Section
Subsection
Subsubsection
Bibliography

LatexAtomicNode
Par
Bibitem

LatexLink

Structural
Sequential
Referential
Citation

PHSEObject

SimpleClass

Figure 2: LaTEX conceptual model

resents the neighborhood near the artifact represent-

ing Chapter 2. A tree layout has been used to display

the structural hierarchy below chap2, shown as the

left-most icon in the �gure. Although not discernible

from the black and white image, the nodes and arcs

are colorcoded (the colors are user-settable) to aid un-

derstanding.

The environment has been successfully used on sev-

eral hypertexts. The repository representing the sam-

ple document used in the above example contains ap-

proximately 6,500 lines of RSF. Three other docu-

ments were placed online: a journal paper, a Ph.D.

dissertation, and a textbook on software engineering.

The three documents were chosen as illustrative ex-

amples because they represent documents of di�erent

sizes: the journal paper is roughly 40 pages, the dis-

sertation 200 pages, and the textbook 400 pages. The

journal paper is represented in 2,190 lines of RSF, the

Ph.D. dissertation 7,542 lines, and the software engi-

neering textbook 11,967 lines. In all cases, the envi-

ronment's performance was acceptable for interactive

use.

4.2 Program understanding

Program understanding, a more traditional appli-

cation domain of reverse engineering, can also be sup-

ported by retargeting the environment appropriately.

The same three steps are used as in the online doc-

umentation domain. This section illustrates the use

of layered modeling in the process using the source

code to SQL/DS as a reference system. SQL/DS is

an ideal candidate for a layered modeling approach

Artifact Icon representation

system

subsystem

module

proc

data

struct

member

Table 2: PL/AS artifacts and their icons

since it represents a successful legacy software system

of substantial size (over 3 million lines of code written

in a proprietary language).

The �rst step is the construction of the knowledge

layer through the speci�cation of a Telos conceptual

model representing the PL/AS domain. A graphical

representation of this schema is shown in Figure 4.

The model captures only those artifacts and relations

required of a PL/AS program to support HSU. Nodes

in the PL/AS domain model represent document ar-

tifacts, while links represent relations between these



Figure 3: Di�erent views of a LaTEX document

artifacts.

The second step is the construction of the data layer

through the gathering of PL/AS artifacts from the

subject document. This is done by loading an RSF

stream representing the desired artifacts and relations

of SQL/DS. This data was produced by a commer-

cial reverse engineering tool and used to populate the

data layer. A typical RSF tuple in this domain might

represent the nesting relationship between structured

variables and their components, represented as mem-

ber struct-name member-name.

The third step is the manipulation of the informa-

tion layer. The PL/AS artifacts are represented by

their respective icons, as shown in Table 2. The facil-

ities provided by the editor for navigating, analyzing,

and presenting the information in this layer were used

to redocument some of the structural aspects of the

system [31].

The entire SQL/DS system is composed of over

100,000 RSF tuples at the data layer. For a repository

of this size, some of the limitations of the prototype

implementation of the environment become apparent.

For example, some of the graphical routines for win-

dow management become sluggish when so many arti-

facts are simultaneously manipulated. However, many

of these limitations are inherent in the X window li-

brary routines used. Moreover, it is not common for a

user to reverse engineering the entire system at once; a

more likely scenario involves partial reverse engineer-

ing of selected components.

5 Summary

Layering techniques have been used in many ways

to improve understanding of large information spaces.

For example, Rajlich et al describe the use of layered

annotations to improve program comprehension [32].



PLASObject

PLASElement

PLASContainerElement
System
Subsystem
Module

Procedure

Variable
Scalar
Record

PLASRelation

Level
Call
Struct
Data
Member
Proc

PHSEObject

SimpleClass

Figure 4: PL/AS schema

A prototype realization of the layered modeling ap-

proach proposed in this paper is found in the Rigi

environment.

A relational model is used to represent the results

of data gathering. The simple yet e�cient format of

RSF provides signi�cant integration bene�ts to the re-

verse engineering environment. A scripting language

based on Tcl [33] is used to enable the straight forward

inclusion of externally produced data. A number of

tools are available to browse the data in its relational

format.

A conceptual modeling language is used to orga-

nize knowledge concerning the information space. The

structuring facilities provided by the Telos language

reduces the cognitive overhead associated with very

large knowledge bases. An interactive schema browser

may be used to visualize the conceptual model (and

instances of it).

A semantic network is used to model information

artifacts. A graphical representation of a semantic

network facilitates the interactive navigation, analy-

sis, and presentation of the information space. Thus,

the network paradigm is well-suited to the exploratory

nature of HSU.

In summary, the information space is constructed

out of data artifacts, structured through the construc-

tion of conceptual models, and interactively explored

in a hypertextual manner by representing neighbor-

hoods as (parts of) semantic networks. The approach

encourages the integration of additional tools into the

reverse engineering environment, building on other re-

search work in an evolutionary manner.

Future work will include the further investigation of

the integration of other tools into the reverse engineer-

ing environment, the retargeting of the environment to

new application domains, and the construction of the

associated domains models. Preliminary results indi-

cate that an extensible but integrated toolkit is re-

quired to support the multi-faceted analysis necessary

for HSU.

Acknowledgments

Part of this research was performed while the au-

thor was at the University of Victoria. The guidance

of Hausi M�uller, the discussions with Kenny Wong,

and the implementation e�orts of Michael Whitney

and Brian Corrie are gratefully acknowledged. This

work was supported in part by the IBM Software So-

lutions Toronto Laboratory, the Science Council of

British Columbia, the University of Victoria, and the

U.S. Department of Defense.

References

[1] A. O'Hare and E. Troan. RE-Analyzer: From source

code to structured analysis. IBM Systems Journal,
33(1):110{130, 1994.

[2] J. H. Walker. Authoring tools for complex document

sets. In E. Barrett, editor, The Society of Text: Hy-

pertext, Hypermedia, and the Social Construction of

Information. The MIT Press, 1989.

[3] P.-J. Courtois. On time and space decomposition of

complex structures. Communications of the ACM,
28(6):590{603, June 1985.



[4] D. L. Parnas. Designing software for ease of exten-

sion and contraction. IEEE Transactions on Software

Engineering, SE-5(2):128{137, March 1979.

[5] Z. L. Lichtman. Generation and consistency checking
of design and program structures. IEEE Transactions

on Software Engineering, SE-12(1):172{181, January

1986.

[6] D. Schefstr�om and G. van den Broek, editors. Tool In-
tegration: Environments and Frameworks. John Wi-

ley & Sons, 1993.

[7] K. Wong, B. D. Corrie, H. A. M�uller, M.-A. D. Storey,

S. R. Tilley, and M. Whitney. Rigi V user's manual,
1994. Part of the Rigi distribution package.

[8] T. Cahil. Practical di�culties in developing tools

for analysis of large application systems. In 3rd

Reverse Engineering Forum (REF '92), (Burlingon,
MA; September 15-17, 1992), September 1992.

[9] J.-M. DeBaud, B. M. Moopen, and S. Rugaber. Do-

main analysis and reverse engineering. In Proceedings

of the International Conference on Software Main-
tenance (Victoria, BC, Canada; September 19-23,

1994), pages 326{335, 1994.

[10] W. Tracz. Domain-speci�c software architecture

(DSSA) frequently asked questions (FAQ). ACM SIG-

SOFT Software EngineeringNotes, 19(2):52{56, April
1994.

[11] W. A. Rolling. A preliminary annotated bibliography

on domain engineering. ACM SIGSOFT Software En-

gineering Notes, 19(3):82{84, July 1994.

[12] S. A. Borkin. Data Models: A Semantic Approach for
Database Systems. The MIT Press, 1980.

[13] J. D. Ullman. Principles of Database Systems. Com-

puter Science Press, Inc., 1980.

[14] F. P. Brooks Jr. No silver bullet: Essence and ac-

cidents of software engineering. IEEE Computer,
20(4):10{19, April 1987.

[15] J. F. Sowa. Conceptual Structures: Information Pro-

cessing in Mind and Machine. Addison-Wesley, 1988.

[16] M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, edi-

tors. On Conceptual Modelling: Perspectives from Ar-
ti�cal Intelligence, Databases, and Programming Lan-

guages. Springer-Verlag, 1984.

[17] B. B. Kristensen and K. �sterbye. Conceptual mod-

eling and programming languages. ACM SIGPLAN

Notices, 29(9), September 1994.

[18] J. Rohrich. Graph attribution with multiple attribute
grammars. ACM SIGPLAN Notices, 22(11):55{70,

November 1987.

[19] J. Mylopoulos and H. J. Levesque. An overview of

knowledge representation. In M. L. Brodie, J. My-
lopoulos, and J. W. Schmidt, editors, On Conceptual

Modelling: Perspectives from Arti�cal Intelligence,

Databases, and Programming Languages, pages 3{17.
Springer-Verlag, 1984.

[20] G. G. Hendrix. Encoding knowledge in partitioned

networks. In N. V. Findler, editor, Associative Net-

works (Representation and Use of Knowledge by Com-
puters), pages 51{92. Academic Press, 1979.

[21] S. R. Tilley, M. J. Whitney, H. A. M�uller, and M.-

A. D. Storey. Personalized information structures. In
Proceedings of the 11th Annual International Confer-

ence on Systems Documentation (SIGDOC '93), (Wa-

terloo, Ontario; October 5-8, 1993), pages 325{337.
ACM (Order Number 6139330), October 1993.

[22] S. R. Tilley. Domain-retargetable reverse engineering

II: Personalized user interfaces. In International Con-

ference on Software Maintenance (ICSM '94), (Vic-
toria, BC; September 19-23, 1994), pages 336{342.

IEEE Computer Society Press (Order Number 6330-

02), September 1994.

[23] S. R. Tilley. Domain-Retargetable Reverse Engineer-

ing. PhD thesis, Department of Computer Science,

University of Victoria, January 1995. Available as
technical report DCS-234-IR.

[24] P. Beynon-Davies, D. Tudhope, C. Taylor, and

C. Jones. A semantic database approach to

knowledge-based hypermedia systems. Information
and Software Technology, 36(6):323{329, 1994.

[25] R. Kowalski. Logic for Problem Solving. North-

Holland, 1979.

[26] E. H. Herrin and R. A. Finkel. QDDB. University of
Kentucky, 1994.

[27] J. Mylopoulos. Conceptual modelling and Telos.

Technical Report DKBS-TR-91-3, Department of

Computer Science, University of Toronto, November
1991.

[28] R. Sobiesiak. A hypertext authoring framework based

on ceonceptual modelling. Master's thesis, University
of Toronto, 1991.

[29] M. Jarke, J. Mylopoulos, J. W. Schmidt, and Y. Vas-

siliou. DAIDA: An environment for evolving software

systems. Technical Report DKBS-TR-91-1, Depart-
ment of Computer Science, University of Toronto, Oc-

tober 1991.

[30] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A.

M�uller. Programmable reverse engineering. Interna-

tional Journal of Software Engineering and Knowl-

edge Engineering, 4(4):501{520, December 1994.

[31] K. Wong, S. R. Tilley, H. A. M�uller, and M.-A. D.
Storey. Structural redocumentation: A case study.

IEEE Software, 12(1):46{54, January 1995.

[32] V. Rajlich, J. Doran, and R. T. Gudla. Layered expla-

nations of software: A methodology for program com-
prehension. In Proceedings of the Third Workshop on

Program Comprehension (WPC '94), (Washington,

DC; November 14-15, 1994), pages 46{52, November

1994.

[33] J. K. Ousterhout. An Introduction to Tcl and Tk.

Addison-Wesley, 1994.


