
Domain{Retargetable Reverse Engineering II:

Personalized User Interfacesy

Scott R. Tilley

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: stilley@csr.uvic.ca

Abstract

The user interface is an integral part of any appli-

cation. This is especially true for reverse engineer-

ing environments, since the understanding process de-

pends both on the user's speci�c cognitive abilities and

on the palette of tools accessible through the interface.

Because software engineers approach program under-

standing in so many di�erent ways, it is impossible to

predict what they want from the supporting environ-

ment in all situations. Therefore, the user interface

should be malleable and customizable. By having such

a personalizable user interface, users can adapt the en-
vironment to their particular needs and \taste," while

still maintaining a common \look and feel."

Keywords: domain-retargetable, program under-
standing, user interfaces

1 Introduction

While much work has been done on modeling how
software engineers understand programs, no single en-
vironment will ever be suitable for all users in all appli-
cation scenarios. The disparate nature of users' cogni-
tive abilities and their diverse approaches to program
understanding preclude the use of a static suite of se-
lection, analysis, and structuring techniques. Simi-
larly, the user interface to the toolset provided by the
supporting environment cannot be inexible. Because
the interface provides access to the tools and shapes
the users' view of the underlying environment, it too
must be dynamic and customizable.

yThis work was supported in part by the British

Columbia Advanced Systems Institute, the IBM Software

Solutions Toronto Laboratory, the IRIS Federal Centres

of Excellence, the Natural Sciences and Engineering Re-

search Council of Canada, the Science Council of British

Columbia, and the University of Victoria.

Unfortunately, the attitude that seems prevalent
to many program understanding tool builders is that
\if programmers would just learn to understand code
the way they ought to" (i.e., the way the builders'
tools work), the code comprehension problem would
be solved [1]. It is now apparent that such a builder-
oriented view is doomed to failure for the analysis of
large programs. Instead, we should provide user inter-
faces that support the users' view; interfaces that sup-
port the natural process of program understanding|
not hinder it.

Perhaps the most important goal for a successful
program understanding environment is to provide a
mechanism through which users can extend the sys-
tem's functionality. For example, it should be possible
to augment the search and selection operations with
user-de�ned algorithms and external tools. The en-
vironment should give users as much freedom as pos-
sible in con�guring the system to their liking. This
con�gurability includes modi�cation of the system's
interface components such as buttons, dialogs, menus,
scrollbars, and so on. Experienced users should be able
to create time-savingmeta-commands or \accelerator"
key sequences. More importantly, for the environment
to be applicable to multiple domains, it should be pos-
sible to alter the system's functionality by changing
the commands associated with elements of the user
interface.

Since the user interface is a crucial part of the in-
frastructure of many software environments [2], partic-
ularly environments for program understanding, and
since personal preferences for such things as menu
structure, mouse action, and system functionality dif-
fer so much from person to person (and from domain
to domain), it is unlikely that any single choice made
by the tool builder will suit all users. Ultimately, it
is the user|not the builder|who decides if the user
interface of an application is adequate.

This paper describes on-going work on domain-

retargetable reverse engineering, as discussed in [3].



Previous e�orts were directed towards extending the
functionality of an existing environment via pro-

grammable reverse engineering [4], a mechanism that
enables users to write their own routines for common
reverse activities such as extraction, selection, analy-
sis, and organization of information artifacts. This pa-
per's focus is on Phase II: making the environment's
user interface tailorable. Speci�cally, it advocates per-
sonalized user interfaces for program understanding
environments.

The next section discusses three issues of impor-
tance to program understanding and describes how
they are a�ected by de�ciencies in traditional user
interfaces. Section 3 describes an approach to per-
sonalized user interfaces in a reverse engineering envi-
ronment for program understanding. The approach
is based on end-user customization of the environ-
ment's user interface through a scripting language.
Section 4 outlines how personalized user interfaces are
used and gives several examples of their application.
Section 5 summarizes the paper and briey discusses
future work.

2 De�ciencies in traditional

user interfaces

Programmers make use of programming knowl-
edge, domain knowledge, and comprehension strate-
gies when attempting to understand a program. One
extracts syntactic information from the source code,
and relies on programming knowledge to form seman-
tic abstractions. Brooks's work on the theory of do-
main bridging [5] describes the programming process
as one of constructing mappings from a problem do-
main to an implementation domain, possibly through

multiple levels. Program understanding, then, in-
volves reconstructing part or all of these mappings.
The process is expectation-driven, and proceeds by
creation, con�rmation, and re�nement of hypothesis.
It requires both intra- and inter-domain knowledge.
A problem with this reverse mapping approach is that
mapping from application to implementation is one-to-
many, because there are many ways of implementing
a concept.

While there are several de�ciencies in traditional
user interfaces, the lack of programmability particu-
larly a�ects program understanding environments in
three ways: cognitive models, domain retargetability,
and tool integration. Each of these is discussed in
more detail below.

2.1 Cognitive models

It is di�cult for any application designer to pre-
dict all the ways an application will be used. In a
program understanding environment, the main goal
is to facilitate code comprehension. Because people
learn in di�erent ways|for for example, goal-directed
(top-down and inductive) versus scavenging (bottom-
up and deductive)|the environment should be exible
enough to support di�erent types of comprehension.

Two common approaches to code comprehension
often cited in the literature are a functional approach
that emphasizes cognition by what the program does,
and a control-ow approach that emphasizes how the
program works. Both top-down and bottom-up com-
prehension models have been used in an attempt to
de�ne how a software engineer understands a pro-
gram. However, case studies have shown that main-
tainers frequently switch between several comprehen-
sion strategies [6]. Therefore, the tools and environ-
ment must support the diverse cognitive processes of
program understanding, rather than impose a process
that is not justi�ed by a cognitive model other than
that of the environment's developers.

Presentation integration can occur at di�erent lev-
els, including the window system, the window man-
ager, the toolkit used to build applications, and the
toolkit's look and feel [7]. The standardization pro-
vided by presentation integration lessens the \cogni-
tive surprise" experienced by users when switching be-
tween tools. However, what is really needed is a way
for the user to specify the common look and feel of
the applications of interest to them, or of tools that
are part of an application. In other words, users need
to be able to impose their own personal taste on the
common look and feel. This re�nement of presentation
integration moves the onus|and the opportunity|for
reducing cognitive overhead due to the user interface
from the tool builder to the tool user.

2.2 Domain retargetability

One way of maximizing the usefulness of a program
understanding system is to make it domain-speci�c.
By doing so, one can provide users with a system tai-
lored to a certain task and exploit any features that
make performing this task easier. However, by tak-
ing this approach the system's usefulness becomes re-
stricted to a particular domain. Using the same sys-
tem on a di�erent task, even one that is similar, may
be impossible.

An alternative to making the system powerful
by making it domain-speci�c, is to make it user-
programmable and hence domain-retargetable. One



would like to make the approach as exible as
possible|a subtle distinction from making it general.
Software can be considered general if it can be used
without change; it is exible if it can be easily adapted
to be used in a variety of situations [8]. General so-
lutions often su�er from poor performance or lack of
features that limit their usefulness. Flexible solutions
may be tailored by the user to fully exploit aspects of
the problem that make its solution easier.

Flexibility and scalability are key requirements for a
successful program understanding environment. The
approach must be exible so that the results can be ap-
plied to many diverse program understanding scenar-
ios as well as di�erent target domains. \Domains" in
this sense is an over-burdened term. It refers to di�er-
ent application domains, such as banking or database
systems; implementation domains, including the ap-
plication's implementation language; and the reverse

engineering domain, in which the software engineer
models and represents the subject system. The ap-
proach must also be applicable to large software sys-
tems, on the order of several million lines of code. Such
a scale precludes the use of programming-in-the-small
approaches to program understanding.

2.3 Tool integration

Most existing reverse engineering systems provide
the user with a �xed set of view mechanisms, such as
call graphs and module charts. While this set might be
considered large by the system's producers, there will
always be users who want something else. One can-
not predict which aspects of a system are important
for all users, and how these aspects should be docu-
mented, represented, and presented to the user. This
is an example of the trade-o� between open and closed
systems. An open system provides a few primitive op-
erations and mechanisms for user-de�ned extensions.
A closed system provides a \large" set of built-in fa-
cilities, but no way of extending the set.

There are two basic approaches to constructing in-
tegrated applications from a set of tools: tool inte-
gration and tool composition [9]. In tool integration,
each tool must be aware of the larger environment,
and the inter-tool interactions are coded in the tools
themselves. This works for tightly-integrated environ-
ments, but in a loosely-coupled environment it is very
di�cult to achieve. In tool composition, tool inter-
action logic resides outside of the tools. Each tool
presents a standard, well-known interface to the out-
side world, and knows nothing about its environment;
the environment contains all the inter-tool coordina-
tion logic. From an end-user perspective, the program

understanding environment should manage tool com-
position, to facilitate the introduction of new tools into
the system. This includes extending the user inter-
face with new widgets, additional tools, and domain-
speci�c personalities.

The program understanding process is extremely
dependent on personal taste and approaches to the
problem. Therefore, the supporting environment re-
quires the integration of di�erent technologies, appli-
cations, and analysis tools. One way of achieving this
goal is through control and presentation integration.
The user would then be able to alternate and select
among these tools as required. Communication in such
a distributed environment can be achieved by scripts
that each tool understands. Such an approach is de-
scribed in the next section.

3 Supporting personalized user

interfaces

The success of moving new technology into the
workplace depends crucially on the acceptance of the
system by its users. If they �nd the system too di�er-
ent from what they are currently using, they will be
loath to change. However, if they can tailor the new
system to �t into their existing environment and work
the way they want it to|not the way the designer
thought they might want it to work|then the system
has a much better chance of success.

Hence, the goal is to provide the users with as much
exibility as possible in structuring the environment to
suit their needs. Such extensibility has proven e�ec-
tive in other domains, such as hypertext systems [10],
custom database applications, and Computer-Aided
Design (CAD) systems. Business application suites
are also beginning to provide scripting languages as a
kind of unifying coordination mechanism. For exam-
ple, Microsoft1 intends to use Visual Basic for Appli-
cations (VBA) [11] as a common extension language
for its suite of o�ce applications. Similarly, Lotus is
planning a cross-application scripting language for its
product o�erings. The customizable user interface of
WordPerfect2 Six.0 is extolled as a signi�cant value-
added feature. In these suites, users have the power
to tailor and con�gure menu bars, status bars, style
ribbons, and scroll bars.

To meet the goal of personalized user interfaces,
the Rigi system has been extended. Rigi is a versa-
tile system and framework under development at the

1Trademark of Microsoft Corporation.
2Trademark of WordPerfect Corporation.



University of Victoria for analyzing the structure of
large software systems. It consists of a variety of pars-
ing systems supporting the extraction of information
from source code or documentation, a repository to
store the information extracted, and rigiedit: an inter-
active graph editor that permits graphical manipula-
tion of the underlying conceptual structures. A more
detailed description of Rigi and its approach to reverse
engineering can be found in [12].

As outlined in [3], in 1993 we embarked on a two-
phased extension to rigiedit to make the environment
domain retargetable. The �rst phase was to extend
the editor's functionality through the inclusion of a
scripting language. The second phase was to make the
user interface tailorable. This section briey outlines
the realization of the second phase: enabling personal-
ized user interfaces. This was done through the use of
the scripting language previously incorporated to ex-
tend system functionality, and the use of an interface
toolkit that allowed us to incrementally retro�t a new
user interface onto an existing one.

3.1 Phase I: Incorporating a
scripting language

Phase I of the changes to rigiedit concentrated on
the decoupling of the graph editor from the graphical
user interface. A transparent scripting layer was then
introduced between the direct-manipulation user in-
terface and the graph editor. This made it possible to
program editor operations independently of graphical
user interactions.

A scripting language ampli�es the power of the en-
vironment by allowing users to write scripts to ex-
tend the tool's facilities. Examples of successful tools
that are end-user programmable include spreadsheets
[13] and the UNIX3 shell. A scripting language is ex-
tremely useful in a windowing environment; it just
works \behind the scenes". Users who accept the de-
fault will be unaware of a scripting language|but its
power is available to those who want to take advantage
of it.

Rather than write yet another command language,
the Rigi command language RCL was built on top of
Tcl [14]. Tcl provides an extendable core language,
and was speci�cally written as a command language
for interactive windowing applications. It also pro-
vides a convenient framework for communicating be-
tween Tcl-based tools. Each application extends the
Tcl core by implementing new commands that are in-
distinguishable from built-in commands, but are spe-

3UNIX is a registered trademark licensed exclusively by

X/Open Company, Ltd.

XmXt //Xlib

Tk

Tcl CTAXT

rigiedit core

Direct

Manipulation

RCL

Scripts

rigiedit UI

Other Tcl-based

Applications

send rigiedit [command]

Figure 1: Extending rigiedit

ci�c to the application. Tcl is application-independent
and provides two di�erent interfaces: a textual inter-
face to users who issue Tcl commands, and a procedu-
ral interface to the application in which it is embedded.

3.2 Phase II: Personalizing the
user interface

Besides using Tcl as a scripting language to enable
users to con�gure the program understanding environ-
ment's actions, one may use it in conjunction with the
Tk toolkit to con�gure the environment's interface.
Tk is an X11 toolkit that implements the Motif4 look
and feel. It is similar in functionality to the Xm toolkit
which we previously used for our Motif interface, ex-
cept that it may be programmed in Tcl.

Rather than having to redo the entire user inter-
face from scratch, the rigiedit architecture was incre-
mentally augmented the existing with Tk widgets. To
do this, the CTAXT [15] interface library was used.
CTAXT enables Tk widgets to coexist with Xm wid-
gets in the same application. Without CTAXT, prob-
lems arise with allocation of window manager signals
and resources. A pictorial representation of the new
rigiedit architecture is shown in Figure 1. All com-
mands, whether they originate from the direct manip-
ulation graphical user interface or from RCL scripts,
go through the same routing and logging mechanism
in the rigiedit core. This includes remote command
sequences as well.5

4Motif is a trademark of Open Software Foundation.
5Tcl provides a send command to enable one applica-



By using Tcl and Tk as an intermediary for all in-
terface actions, users can write Tcl scripts to person-
alize the layout and appearance of the environment as
desired. The use of some of these tailoring facilities is
discussed in the next section.

4 Using personalized user

interfaces

The user interface is customized and extended in
a manner very similar to how the functionality of
the program understanding environment is customized
and extended. Users can write scripts that are read
automatically upon rigiedit invocation to tailor the in-
terface. The same scripts can be used to dynamically
alter the user interface by reconsulting the source �le
while rigiedit is running. Such on-the-y alterations
of the user interface is di�cult using other methods,
such as the OSF/Motif User Interface Language (UIL)
[16].

The rigiedit user interface looks at three environ-
ment variables to determine its \taste." Beyond the
standard X resources �le Rigiedit, the environment
variables RIGISTY and RIGIUSTY are used to repre-
sent system-de�ned and user-de�ned extensions to the
core user interface functions, respectively. These �les
serve purposes similar to their RIGIRCL/RIGIURCL

toolset counterparts: they are for programming the
system default and user preferences of the user inter-
face, respectively. A command-line option may also
be used to load session preferences. Thus, the user
interfaces preferences are applied in layers: Rigiedit,
then RIGISTY, then RIGIUSTY, then command-line
settings.

To illustrate the use of dynamic alteration of the
user interface, a small code fragment used to tailor the
Layout menu (used in the example below) is shown in
Figure 2. The RCL code shown in the Figure is more
complicated than that which would normally be used;
adding a menu item to an existing menu can be accom-
plished through the use of higher-level parameterized
procedures, or through the use of interface builders for
Tk, such as XF [17].

To illustrate the use of the personalized user inter-
face as discussed above and in Section 3, the analysis of
a sample C program is used. One method of reverse
engineering C programs is to group data types and
their access functions into logical components (subsys-
tems). The original programmer may or may not have
done this type of abstract datatype (ADT) clustering

tion to control another across the network.

# Personalized layout menu [SRT 22Mar94]

# Assumes .rigi.menubar.layout.m already

# exists from default RIGISTY file.

.rigi.menubar.layout.m add separator

.rigi.menubar.layout.m add command\

-label "Spring"\

-bitmap @/home/stilley/icons/spring.xbm\

-command "layout gel-spring"\

-underline 0\

-accelerator Alt+S

pack .rigi.menubar.layout

Figure 2: Personalizing the layout menu

in the actual source code, but experience indicates it
is a useful �rst step in C program understanding.

There are at least two ways of identifying ADT sub-
system candidates: visually and analytically. Visual
identi�cation is sometimes possible through the use of
an appropriate layout algorithm, one that clusters ar-
tifacts appropriately. A spring layout [18] does this,
since it models the subject software system as a phys-
ical system, using node positions and arc strengths to
simulate attraction and repulsion among nodes.

Figure 3 shows a sample rigiedit session. The Lay-

out menu has been torn o� and extended as described
above. The user has selected a subset of nodes in the
C program and initiated two layouts: the �rst (shown
in the left window of the �gure) reects the control
ow of the program, using a builtin tree layout algo-
rithm [19]; the second (shown in the right window of
the �gure) reects the data usage of the program us-
ing the o�-line spring layout algorithm. Two nodes in
the data-oriented window clearly stand out as \inter-
esting": list and element. These are C struct data
types. This visual information could be used to guide
the user towards a decomposition based on data en-
capsulation.

Other examples of tailoring the user interface to aid
program understanding include using external tools
(such as a spreadsheet) to visualize, manipulate, and
maintain interface dependency information produced
by the editor, attaching operations to be invoked when
subsystem nodes are selected and \opened" (such as
indicating the number of nodes and arcs in the sub-
system), and even replacing the default canvas with
another presentation tool (such as a more advanced
animation and/or visualization system). These types



Figure 3: Visual identi�cation of abstract data type

of customization are easy for the end-user to specify;
they enable integration of foreign tools with the graph
editor; and they allow users to leverage their human
cognitive abilities in deciding what is the best method
of information presentation for their current applica-
tion domain.

5 Summary

The understanding process is dependent on both
individuals and their speci�c cognitive abilities, and
on the (sometimes limited) set of facilities that tools
provide. Understanding also requires the ability to
adapt to various application domains, implementation
languages, and working environments. The approach
taken is based on customizable user interfaces, which
give individuals the ability to tailor their environment
to suit their needs.

The approach achieves exibility partially through
the incorporation of a scripting language that provides
an interfacing mechanism. The scripts give users the
ability to extend the tools in their reverse engineering
toolbox by de�ning, storing, and retrieving commonly

used operations. Using Tcl as the scripting language
and Tk as the user interface toolkit enabled us to lever-
age skills of other people and groups who write Tcl
scripts. If we had written our own scripting language,
this would not have been possible to nearly the same
extent.

Rather than provide a single interface to a gen-
eral toolset, the persistent problem of \what is a good
user interface for this application" is solved|not by
the tool builder, but by the tool user. By providing
a user-programmable program understanding environ-
ment, the application domain need not be limited to
one area. While most program understanding environ-
ments provide a �xed palette of analysis, selection, and
presentation techniques, our approach uses a scripting
language that enables users to write their own routines
for these activities. Users can adapt the environment
to suit their own personal taste, while still working
within the common look and feel imposed by the win-
dow manager.

Future work will include the further investigation of
the integration of rigiedit with other reverse engineer-
ing tools. Preliminary results indicate that an exten-



sible but integrated toolkit is required to support the
multi-faceted analysis necessary to understand legacy
software systems.

Acknowledgments

The support work of Brian Corrie and Michael
Whitney is greatly appreciated.

References

[1] A. von Mayrhauser and A. M. Vans. From code
understanding needs to reverse engineering tools
capabilities. In CASE '93: The Sixth Interna-

tional Conference on Computer-Aided Software

Engineering, (Institute of Systems Science, Na-
tional University of Singapore, Singapore; July
19-23, 1993), pages 230{239, July 1993. IEEE
Computer Society Press (Order Number 3480-
02).

[2] M. Young, R. N. Taylor, and D. B. Troup. Soft-
ware environment architectures and user interface
facilities. IEEE Transactions on Software Engi-

neering, 14(6):697{708, June 1988.

[3] S. R. Tilley, H. A. M�uller, M. J. Whitney, and
K. Wong. Domain-retargetable reverse engi-
neering. In CSM '93: The 1993 International

Conference on Software Maintenance, (Montr�eal,
Qu�ebec; September 27-30, 1993), pages 142{151,
September 1993. IEEE Computer Society Press
(Order Number 4600-02).

[4] S. R. Tilley, K. Wong, M.-A. D. Storey, and
H. A. M�uller. Programmable reverse engineer-
ing. Submitted to the International Journal of

Software Engineering and Knowledge Enginering,
July 1994.

[5] R. Brooks. Towards a theory of the comprehen-
sion of computer programs. International Journal
of Man-Machine Studies, 18:543{554, 1983.

[6] E. M. Gellenbeck and C. R. Cook. An investi-
gation of procedure and variable names as bea-
cons during program comprehension. Technical
Report 91-60-2, Computer Science Department,
Oregon State University, 1991.

[7] A. I. Wasserman. Tool integration in software en-
gineering environments. In G. Goos and J. Hart-
manis, editors, Proceedings of the International

Workshop on Environments, (Chinon, France;
September 18-20, 1989), pages 137{149. Springer-
Verlag, 1989.

[8] D. L. Parnas. Designing software for ease of ex-
tension and contraction. IEEE Transactions on

Software Engineering, SE-5(2):128{137, March
1979.

[9] A. K. Arora, D. W. Hurst, and J. C. Ferrans.
Building diverse environments with PCTE work-
bench. In PCTE '93, 1993.

[10] P. D. Stotts and R. Furuta. Dynamic adaptation
of hypertext structure. In Proceedings of Hyper-

text '91 (San Antonio, Texas; December 15-18,
1991), pages 219{231, December 1991. ACM Or-
der Number 614910.

[11] T. J. Biggersta�. Directions in software devel-
opment & maintenance. University of Victoria
invited talk, December 9, 1993.

[12] H. M�uller, S. Tilley, M. Orgun, B. Corrie, and
N. Madhavji. A reverse engineering environment
based on spatial and visual software interconnec-
tion models. In SIGSOFT '92: Proceedings of

the Fifth ACM SIGSOFT Symposium on Soft-

ware Development Environments, (Tyson's Cor-
ner, Virginia; December 9-11, 1992), pages 88{98,
December 1992. In ACM Software Engineering

Notes, 17(5).

[13] B. A. Myers. Why are human-computer inter-
faces di�cult to implement? Technical Report
CMU-CS-93-183, Computer Science Department,
Carnegie Mellon University, July 1993.

[14] J. K. Ousterhout. An Introduction to Tcl and Tk.
Addison-Wesley, 1994.

[15] D. Spruce and H. Pleiss. CTAXT { Combine
Tcl/Tk with arbitrary X toolkits. Technical re-
port, European Synchrotron Radiation Facility,
January 1994.

[16] D. Heller and P. M. Ferguson.Motif Programming

Manual. O'Reilly & Associates, Inc., 1994.

[17] S. Delmas. XF: Design and implementation of
a programming environment for interactive con-
struction of graphical user interfaces. Part of
the XF distribution kit, Technische Universit�at
Berlin, 1993.

[18] T. Fruchtermann and E. Reingold. Graph draw-
ing by force-directed placement. Technical Re-
port UIUC CDS-R-90-1609, Department of Com-
puter Science, University of Urbana-Champaign,
1990.

[19] E. Reingold and J. Tilford. Tidier drawing of
trees. IEEE Transactions on Systems, Man, and

Cybernetics, SE-7(2), March 1981.


