
Rigi: A Visualization Environment

for Reverse Engineering

Margaret-Anne D. Storey

School of Computing
Simon Fraser University
Burnaby, BC, Canada

(250) 721-6019
mstorey@csr.uvic.ca

Kenny Wong

Dept. of Computer Science
University of Victoria

Victoria, BC, Canada
(250) 721-7294

kenw@csr.uvic.ca

Hausi A. M�uller

Dept. of Computer Science
University of Victoria
Victoria, BC, Canada

(250) 721-7630
hausi@csr.uvic.ca

ABSTRACT

The Rigi reverse engineering system provides two con-
trasting approaches for presenting software structures
in its graph editor. The �rst displays the struc-
tures through multiple, individual windows. The sec-
ond (newer) approach, Simple Hierarchical Multi-
Perspective (SHriMP) views, employs �sheye views of
nested graphs. We compare and contrast these two in-
terfaces for visualizing software graphs, and provide re-
sults from user experiments.

Keywords

Fisheye views, graph editor, nested graphs, reverse en-
gineering, software visualization.

INTRODUCTION

Graphs are particularly suitable for visually presenting
software structure. Nevertheless, as the size of soft-
ware systems increase, so too do their representations as
graphs. Advanced graphics and abstraction techniques
are needed to manage the visual complexity of these
large graphs.

The Rigi reverse engineering system currently provides
two solutions for browsing software subsystem hierar-
chies [1]. The �rst approach uses multiple, overlapping
windows, where each window displays a portion of a
subsystem hierarchy. A second (newer) approach, the
Simple Hierarchical Multi-Perspective (SHriMP) visu-
alization technique, presents software structures using
�sheye views of nested graphs.

THE RIGI SYSTEM

In Rigi, parsing the subject software system results in
a 
at resource-
ow graph that can be manipulated us-
ing a graph editor. The next phase is semi-automatic
and involves pattern-recognition skills, where the re-
verse engineer identi�es subsystems in the 
at graph

that form meaningful abstractions. These subsystems
are collapsed to build multiple, layered hierarchies of
abstractions (see Fig. 1).

level arcs

collapse node

subsystem

composite arc

collapse node

subsystem

Figure 1: Rigi graph model

MULTIPLE WINDOWS

In the original Rigi approach, a subsystem hierarchy is
presented using individual, overlapping windows that
each display a speci�c slice of the hierarchy. For exam-
ple, the user can open windows to display a particular
level in the hierarchy, a speci�c neighborhood around
a software artifact, a 
attening of the hierarchy, or the
overall tree-like structure of the entire hierarchy (see
Fig. 2). However, with many open windows, users fre-
quently become disoriented.

SHriMP VIEWS

The SHriMP visualization technique employs a nested-
graph formalism and a �sheye-view algorithm for ma-
nipulating large graphs that provides contextual cues
and preserves constraints such as orthogonality and
proximity among individually resizable nodes. For Rigi
purposes, the containment or nesting of nodes conveys
the parent-child relationships in a subsystem hierarchy
(see Fig. 3).

USER EXPERIMENTS

A small pilot study involving 12 users was conducted
at the University of Victoria and Simon Fraser Uni-
versity according to an experiment design described in
[2]. Three software browsing methods were evaluated
(in this order): command-line tools (vi and grep), Rigi
with multiple windows, and Rigi with SHriMP views.



(a) (b) (c)

Figure 2: (a) This window presents a main function and two subsystems List and Element which represent abstract
data types. (b) The List node is opened to view its children, the list data type and access functions. (c) This overview
window presents the subsystem hierarchy and provides context for the other windows.

src
main

List

Element

(a)

elementinfo

elementcreate

elementnextelementsetnext

mylistprint

listcreatelistnextlistfirst

listinsert

src

List
listinit listid

list

Element

element

main

(b)

listinsert

listnext

mylistprintlistcreate

listinit listfirst

elementsetnextelementinfo

elementnext
elementcre

src
main

Element

List

list

element

listid

(c)

Figure 3: (a) This window presents a main function and two subsystems List and Element as before. (b) The List

and Element nodes have been opened to display their children and show an overview of the hierarchy. (c) Composite
arcs have been opened to display the constituent lower-level dependencies.

Each user explored three game programs of varying size
but similar complexity (in random order): Fish, Hang-
man, and Monopoly. Each user performed four high-
level tasks (e.g., what does subsystem x do?) and four
low-level tasks (e.g., �nd all artifacts that directly or in-
directly depend on artifact x) with each interface. After
the tasks, each user answered a usability questionnaire
and participated in an informal interview.

Some �ndings found one interface less e�ective than an-
other. For low-level tasks on the large Monopoly pro-
gram, the command-line tools were worse than mul-
tiple Rigi windows (P = 0.01) and ShriMP views
(P = 0.0005). For low-level tasks on the very small
Fish program, the command-line tools and multiple
Rigi windows were worse than SHriMP (by P = 0.05
and P = 0.005 respectively). Questionnaire results
suggested that the users were more satis�ed with the
SHriMP interface than with multiple Rigi windows (at
least when exploring small programs). When asked to
hypothetically choose a user interface for their next soft-
ware project, 8 users chose SHriMP.

SUMMARY

Rigi provides two interfaces for browsing software hier-
archies. These two interfaces have recently been evalu-
ated through some user experiments at the University of

Victoria and Simon Fraser University. Early results and
observations indicate that the two interfaces are e�ec-
tive for di�erent types of program understanding tasks.
We are currently planning further experiments to test
this hypothesis.

REFERENCES

[1] M.-A. D. Storey, H. M�uller, and K. Wong. Ma-
nipulating and documenting software structures. In
P. Eades and K. Zhang, editors, Software Visual-

ization. World Scienti�c Publishing Co., November
1996.

[2] M.-A. D. Storey, K. Wong, P. Fong, D. Hooper,
K. Hopkins, and H. M�uller. On designing an ex-
periment to evaluate a reverse engineering tool. In
Proceedings of the 3rd Working Conference on Re-

verse Engineering, Monterey, California, Nov 8-10,
1996.


