
Domain-Retargetable Reverse Engineering

by

Scott Robert Tilley

B.Comp.Sci., Concordia University, 1986
M.Sc., University of Victoria, 1989

A dissertation submitted in partial ful�llment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in the Department of Computer Science

We accept this dissertation as conforming
to the required standard

Dr. H. A. M�uller, Supervisor (Department of Computer Science)

Dr. M. R. Levy, Departmental Member (Department of Computer Science)

Dr. W. W. Wadge, Departmental Member (Department of Computer Science)

Dr. V. K. Bhargava, Outside Member (Department of Electrical & Computer Engineering)

Dr. P. G. Sorenson, External Examiner (University of Alberta)

c
 Scott Robert Tilley, 1995
University of Victoria

All rights reserved. This dissertation may not be reproduced

in whole or in part, by photocopying or other means,

without the permission of the author.

Supervisor: Dr. Hausi A. M�uller

Abstract

Understanding the structure of large information spaces can be enhanced using reverse en-

gineering technologies. The understanding process is dependent on an individual's cognitive

abilities and preferences, on one's familiarity with the application domain, and on the set of

support facilities provided by the reverse engineering toolset. Unfortunately, most reverse

engineering environments provide a �xed palette of knowledge organization, data gathering,

and information navigation, analysis, and presentation techniques.

This dissertation presents a domain-retargetable approach to reverse engineering based

on end-user programming. The approach enables users to model their application domain,

to leverage their cognitive powers and domain knowledge, and to integrate other tools

into the reverse engineering environment. It is supported by an architecture for a domain-

independent meta reverse engineering environment, called the PHSE (ProgrammableHyper

Structure Editor).

The PHSE provides a basis upon which users construct domain-speci�c reverse engi-

neering environments. It is instantiated for a particular application domain by specializing

its conceptual model, by extending its core functionality, and by personalizing its user in-

terface. To illustrate the approach, a prototype implementation of the PHSE is retargeted

to two application domains: online documentation and program understanding.

Keywords: Conceptual modeling, domain retargetability, end-user programming, hyper-

structure understanding, hypertext, integration mechanisms, online documentation, pro-

gram understanding, reverse engineering, scripting.

ii

Examiners:

Dr. H. A. M�uller, Supervisor (Department of Computer Science)

Dr. M. R. Levy, Departmental Member (Department of Computer Science)

Dr. W. W. Wadge, Departmental Member (Department of Computer Science)

Dr. V. K. Bhargava, Outside Member (Department of Electrical & Computer Engineering)

Dr. P. G. Sorenson, External Examiner (University of Alberta)

iii

Contents

Abstract ii

Contents iv

List of �gures ix

List of tables xi

1 Introduction 1

1.1 The problem : 1

1.2 The approach : 4

1.3 Research objectives : 7

1.4 Related work : 7

1.4.1 The HAM : 8

1.4.2 HyperPro : 9

1.4.3 Rigi : 10

1.4.4 The Software Re�nery : 12

1.4.5 PCTE Workbench : 13

1.5 Dissertation outline : 14

2 Programmable reverse engineering 16

2.1 Introduction : 16

2.2 A reverse engineering environment design space : : : : : : : : : : : : : : : : 17

2.2.1 Cognitive models and the understanding process : : : : : : : : : : : 18

2.2.2 Toolset extensibility : 19

iv

2.2.2.1 Data gathering : 20

2.2.2.2 Knowledge organization : 21

2.2.2.3 Information navigation, analysis, and presentation : : : : : 25

2.2.3 Domain applicability : 27

2.3 End-user programming : 29

2.3.1 End-user programmable applications : : : : : : : : : : : : : : : : : : 29

2.3.1.1 Personal computer applications : : : : : : : : : : : : : : : : 29

2.3.1.2 Text editors : 30

2.3.1.3 Operating systems : 31

2.3.2 Scripting languages : 32

2.3.2.1 Tcl/Tk : 32

2.3.2.2 HyperTalk and AppleScript : : : : : : : : : : : : : : : : : : 32

2.3.2.3 Rexx : 33

2.3.3 Summary : 33

2.4 Domain-retargetable reverse engineering : 34

2.5 Summary : 35

3 The PHSE 36

3.1 Introduction : 36

3.2 Architecture : 37

3.2.1 The kernel : 38

3.2.2 The core : 38

3.2.3 The interface ring : 39

3.2.4 The personality ring : 39

3.2.5 Summary : 40

3.3 Model : 40

3.3.1 Telos: A language for conceptual modeling : : : : : : : : : : : : : : 40

3.3.1.1 The representational framework : : : : : : : : : : : : : : : 41

3.3.1.2 The classi�cation dimension : : : : : : : : : : : : : : : : : 42

3.3.1.3 The generalization dimension : : : : : : : : : : : : : : : : : 44

3.3.1.4 The attribute mechanism : : : : : : : : : : : : : : : : : : : 44

v

3.3.1.5 Rationale : 45

3.3.2 Conceptual model : 45

3.3.3 Data model : 46

3.4 Realization : 48

3.4.1 API : 48

3.4.2 Implementation : 49

3.4.2.1 Core functionality : 49

3.4.2.2 User interface : 50

3.4.2.3 Model : 51

3.4.3 Toolset : 52

3.4.3.1 Data gathering : 53

3.4.3.2 Knowledge organization : 54

3.4.3.3 Information navigation, analysis, presentation : : : : : : : 55

3.4.3.4 Miscellaneous operations : : : : : : : : : : : : : : : : : : : 63

3.4.3.5 Remarks : 65

3.5 Summary : 65

4 Retargeting the PHSE 66

4.1 Introduction : 66

4.2 Instantiation : 67

4.3 Online documentation : 68

4.3.1 Background : 69

4.3.2 The problem : 70

4.3.3 The approach : 71

4.3.4 An illustrative example : 75

4.3.4.1 Knowledge organization : 75

4.3.4.2 Data gathering : 75

4.3.4.3 Information navigation, analysis, and presentation : : : : : 78

4.3.5 Summary : 82

4.4 Program understanding : 83

4.4.1 Background : 83

vi

4.4.2 The problem : 85

4.4.3 The approach : 86

4.4.4 An illustrative example : 88

4.4.4.1 Knowledge organization : 89

4.4.4.2 Data gathering : 91

4.4.4.3 Information navigation, analysis, and presentation : : : : : 93

4.4.5 Summary : 96

4.5 Summary : 97

5 Conclusions 98

5.1 Research summary : 98

5.2 Contributions : 99

5.3 Results : 100

5.4 Future work : 101

5.5 Concluding remarks : 103

A Selected implementation details 121

A.1 Architecture of Rigi IV : 121

A.2 Changes to Rigi IV : 122

A.2.1 Phase I: Making the editor programmable : : : : : : : : : : : : : : : 123

A.2.2 Phase II: Making the user interface tailorable : : : : : : : : : : : : : 124

A.2.3 Phase III: Incorporating a domain model : : : : : : : : : : : : : : : 126

A.3 Limitations : 127

B Telos schemas 128

B.1 PHSE schema : 130

B.2 LATEX schema : 131

B.3 PL/AS schema : 134

vii

C RCL examples 137

C.1 Web deletion : 138

C.2 O�ine layout : 139

C.3 LATEX-speci�c node open : 140

C.4 Hypertext complexity metrics : 141

C.5 Cyclomatic complexity metric : 144

C.6 SQL/DS decomposition : 145

viii

List of Figures

2.1 Reverse engineering environment design space : : : : : : : : : : : : : : : : : 18

3.1 The PHSE's ring architecture : 38

3.2 The PHSE schema : 46

3.3 The PHSE toolset : 52

3.4 Displaying active RCL variables and procedures : : : : : : : : : : : : : : : : 54

3.5 A neighborhood : 55

3.6 Attribute- and structure-based selection widgets : : : : : : : : : : : : : : : 57

3.7 Web edit widget : 58

3.8 Web splicing : 59

3.9 Web traversal widget : 60

3.10 Connectivity analysis of a neighborhood : 61

3.11 Menu customization widget : 63

3.12 Widget customization : 64

4.1 Retargeting the PHSE : 67

4.2 Document hyperstructure : 73

4.3 LATEX schema : 77

4.4 Di�erent views of a LATEX document : 79

4.5 Writing style violation : 80

4.6 PL/AS schema : 90

4.7 PL/AS structural feature extraction and normalization : : : : : : : : : : : : 93

4.8 Data coupling and call structures : 94

4.9 Name-based subsystem decomposition : 95

ix

A.1 The Rigi IV environment's main components : : : : : : : : : : : : : : : : : 122

A.2 Extending rigiedit : 124

A.3 New rigiedit architecture : 125

B.1 Telos s-expression grammar : 129

x

List of Tables

3.1 Sample icons : 62

4.1 LATEX artifacts and their icons : 76

4.2 PL/AS artifacts and their icons : 89

4.3 PL/AS relations : 91

A.1 Rigiattr for COBOL : 126

xi

Acknowledgments

I am grateful to my supervisor, Dr. Hausi M�uller, for his guidance, support, and friend-

ship throughout my graduate career. He has been a great source of inspiration and has

provided me with an admirable role model. He has also created an excellent research envi-

ronment without which I would not have been able to complete this work.

My time spent at UVic would never have been so enjoyable without members of the Rigi

group to spend it with. To Mike, Ken, Peggy, Mehmet, Brian, Dilian, and others: Thank

you. Near and far, past and present, all have contributed to this research in some way.

Faith and I will miss the friendship and family support of Richard and Margret. They

made Victoria feel more like home for us. Our card games, Milles Bournes, and holiday

dinners are not �nished, just temporarily suspended until we return.

I would like to thank my soccer teammates from The Dirty Bits intramural squads over

the years. They provided me with much-needed relief from daily activities|especially when

happy hour was no longer possible.

Finally, I would like to express my gratitude to the IBM Software Solutions Toronto

Laboratory, the IBM Centre for Advanced Studies, and the Science Council of British

Columbia for their support.

xii

For Faith, and my parents.

\A deadline has a wonderful way of focusing the mind."

| Professor Moriarty, Ship in a Bottle, Star Trek: The Next Generation.

xiii

Chapter 1

Introduction

\The idea of providing a tailorable, con�gurable, integrated project support en-
vironment which is customized as necessary for di�erent organizations, projects,
and individuals is in reality a long way from current practice."

| Brown et al., Principles of CASE Tool Integration [BCM+94].

1.1 The problem

This dissertation addresses the challenges of applying reverse engineering technologies to

the problem of understanding large information spaces. Speci�cally, it deals with aiding hy-

perstructure understanding (HSU): identifying artifacts and understanding their structural

relationships in complex information webs [Oss84]. HSU is an objective rather than a well-

de�ned process [OT94]. The pre�x hyper is used to distinguish HSU from the in-the-small

activity of understanding the internal structure of any single artifact; we are concerned with

the analysis of overall system structure.

When any entity increases in size by several orders of magnitude, it changes in nature

as well as in size [Wal89]. When one attempts to understand a large body of information,

the overall structure of the information space is just as important as the inner structure of

1

CHAPTER 1. INTRODUCTION 2

any single artifact|if not more so. This is especially true when the number of artifacts in

the domain is much larger than the size of each artifact.

Decomposition has long been recognized as a powerful tool for the analysis of large and

complex systems. The technique of decomposing a system, studying the components, and

then studying the interactions of those components has been used successfully in many

areas of engineering and science [Cou85]. For example, in the software engineering domain,

modularization is a technique used to manage complexity by decomposing a large problem

into several smaller ones. It can lead to simpler system structure, but it is not a panacea. It

can lead to a proliferation of small parts; so much so that it is di�cult to understand their

inter-relationships [Par79]. Since good software engineering design suggests that modules

be kept relatively small, the number of modules in a large system is signi�cant [Lic86].

For instance, in a system of 500,000 lines, with roughly 200 lines per module, there would

be 2,500 modules. This is an order of magnitude more than there are lines of code in

each module. At this scale, the understanding problem goes beyond the algorithms and

data structures of computation [SG92]. It moves into the realm of architecture and HSU:

determining what modules comprise the system, how they are organized, and how they

interact [SvdB93].

Reverse engineering technologies can be used to aid HSU. Although no standard de�ni-

tion of reverse engineering exists, Chikofsky and Cross [CC90] provide a useful taxonomy.

They state:

Reverse engineering is the process of analyzing a subject system to identify the

system's components and their inter-relationships, and to create representations

of the system in another form or at higher levels of abstraction.

While the term \reverse engineering" is borrowed from hardware development, where it is

usually applied to the process of discovering how other people's systems work, this de�nition

of reverse engineering is su�ciently broad so as to be applicable to many domains. For

example, in software engineering the term is used to describe the process of discovering how

CHAPTER 1. INTRODUCTION 3

one's own systems work. It can also be applied to hypertext to mean the creation of online

documentation from existing linear text.

Reverse engineering is seen as an activity which does not change the subject system; it is

a process of examination, not a process of change. It can facilitate the understanding process

through the identi�cation of artifacts, the discovery of their relationships, and the generation

of abstractions. This process is dependent on one's cognitive abilities and preferences, on

one's familiarity with the application domain, and on the set of support facilities provided

by the reverse engineering environment.

Unfortunately, most reverse engineering environments are builder-oriented, rather than

user-oriented. They provide a �xed palette of techniques, decided in advance by the en-

vironment's developers. This limits the e�ectiveness of reverse engineering for HSU in at

least three ways: domain applicability, domain modeling, and domain-instance analysis.

A domain is a problem area [DMR94]. An approach to reverse engineering, and the

environment supporting the approach, must be
exible so that it can be applied to diverse

target domains. \Domains" in this sense is an over-burdened term. It includes di�erent

application domains, such as database systems, health information systems, and online doc-

umentation systems; implementation domains, including the application's implementation

language; and the reverse engineering domain, in which the user applies reverse engineering

to the problem of HSU.

A domain model is a representation that captures the structure and composition of

elements within a domain [Tra94]. It may be constructed through domain analysis: the

process of identifying, organizing, and representing the relevant information in a domain

[Rol94]. A successful approach to reverse engineering must allow di�erent domain models to

be speci�ed for di�erent application domains. A domain model provides the user with a set

of expected constructs to look for when analyzing a subject system. Moreover, the domain

model acts as a schema for guiding the reverse engineering process and as a framework for

organizing its results.

Perhaps the most important aspect of a successful reverse engineering environment in

CHAPTER 1. INTRODUCTION 4

aiding users to understand the structure of particular problem instances in a speci�c ap-

plication domain is toolset extensibility. No rigid environment that provides a static suite

of techniques for the basic reverse engineering operations of gathering, organizing, and pre-

senting information will ever be suitable for all users in all domains. Users should be able to

alter the way builtin operations work, to integrate other tools and applications that provide

complementary functionality into the environment, and to write their own routines for these

activities if they so desire.

Regrettably, the attitude that seems prevalent to many tool builders is that \if program-

mers (users) would just learn to understand ... the way they ought to" (i.e., the way the tools

work), the comprehension problem would be solved [vMV93]. Such a builder-oriented view

is unsuitable for the analysis of large bodies of information [BH92]. Instead, the reverse en-

gineering environment should be user-oriented: it should aid HSU by providing approaches,

tools, and interfaces that support the user's natural process of understanding|not hinder

it.

1.2 The approach

Structural understanding is identi�ed in [Nin89] as the second of four levels of understand-

ing. The �rst and lowest level of understanding is the implementation level, which examines

individual artifacts. The third level is functional understanding, which examines the rela-

tionships between artifacts and their behavior. The fourth level is the domain level, which

examines concepts speci�c to the application domain. The degree of abstraction increases

with each level.

The current state-of-the-art in reverse engineering is such that aiding understanding

at the implementation level is possible, and limited aid is available for the structural level;

automated function- and domain-level understanding is extremely limited, if not impossible.

However, even structural-level understanding is problematic when the number of artifacts

and relationships in the information space becomes very large. Hence, the goal is to increase

CHAPTER 1. INTRODUCTION 5

the power of reverse engineering at the structural level, so that understanding at higher

levels of abstraction will be possible.

We propose a domain-retargetable approach to reverse engineering based on end-user

programming. The approach classi�es reverse engineering activities into three canonical

areas: data gathering, knowledge organization, and information navigation, analysis, and

presentation techniques. By making each of these activities end-user programmable, the

capabilities of the environment are extensible. It enables users to model their application

domain, to leverage their cognitive powers and domain knowledge, and to integrate other

tools into the reverse engineering environment to extend its functionality and personalize

its interface to suit their needs. The approach is meant to advance the state-of-the-art in

reverse engineering by providing a more user-oriented environment than the current state-

of-the-practice.

The approach enables users to construct models of their application domain. The mod-

els are described using Telos [Myl91], a language for conceptual modeling. The domain

model provides structuring and abstraction mechanisms that help reduce the complexity of

the information space. The abstraction mechanisms aggregation, classi�cation, and gener-

alization, as well as the notion of a web, are the central concepts used in the approach for

representing higher levels of abstraction. By enabling users to represent diverse application

domains using a common representation, knowledge organization has been made end-user

programmable.

The approach enables users to leverage their cognitive abilities and domain expertise

through the pervasive use of scripting. HSU takes place within the context of a speci�c

application domain. Each person has a di�erent technique, and no process or sequence

should be imposed by the support environment. To a great extent, the techniques used

depend on personal style, and to some extent, on the task at hand [Bro91]. An interpreted

language based on Tcl [Ous94] is used to record and exploit users' reverse engineering

techniques in scripts. Users can create libraries of domain-dependent reverse engineering

strategies encoded as scripts. As their expertise in their application domain grows, so will

CHAPTER 1. INTRODUCTION 6

their library of scripts.

The approach enables users to integrate other tools into the reverse engineering envi-

ronment to extend its functionality using the same scripting mechanism. This extensibility

includes both the environment's operations and its interface. Scripts are used for control,

data, and presentation integration. By providing a programmable toolset, the environ-

ment's applicability is not limited to one domain. By providing a programmable interface,

users can adapt the environment to their particular taste, while still maintaining a common

\look and feel."

The approach is supported by a software architecture for a domain-independent meta re-

verse engineering environment for HSU, called the PHSE1 (Programmable HyperStructure

Editor). The PHSE architecture directly addresses the canonical reverse engineering activi-

ties identi�ed by the approach. The PHSE model includes a domain-independent conceptual

model for the representation and organization of the artifacts and relations of complex hy-

perstructures, a data model upon which the conceptual model is built, and a physical layer

upon which the data model is implemented.

Together, the PHSE architecture and model provide a basis upon which users construct

domain-speci�c reverse engineering environments. The PHSE is instantiated for a particular

application domain by specializing its conceptual model, by extending its core functionality,

and by providing an application-speci�c user interface personality. The resultant system is

one that is tailored to a speci�c application domain. It supports the gathering of informa-

tion artifacts from the subject system, the organization of these artifacts into user-de�ned

structures, and the navigation, analysis, and presentation of the resultant structures in a

user-de�nable manner.

1Pronounced \fuzzy".

CHAPTER 1. INTRODUCTION 7

1.3 Research objectives

The focus of this research is to investigate a domain-retargetable approach to reverse en-

gineering that facilitates exploratory HSU through the use of end-user programming. We

are not attempting to investigate speci�c aspects of reverse engineering per se, for example,

speci�c decomposition and clustering algorithms for programming understanding. Rather,

our main objective is to validate our thesis that by incorporating end-user programming

into all key aspects of reverse engineering, HSU is improved in an identi�able manner.

Our goal in the design of the PHSE is to construct a framework for reverse engineering

that supports the approach. We show how the framework addresses the criteria for a reverse

engineering environment. We also show how the PHSE architecture addresses de�ciencies

in existing systems.

Our goal in illustrating the use of the PHSE is to validate our thesis by demonstrating

the viability of the approach in two real-world application domains [Har94]. By creating

a proof-of-concept implementation of the PHSE we show that the PHSE is realizable. By

re-targeting it to online documentation and program understanding we show that the PHSE

is domain retargetable. By integrating instantiations of the PHSE with other tools we show

its extensibility.

1.4 Related work

In this section we review �ve of the most important bodies of work related to our research:

the Hypertext Abstract Machine (HAM) [CG88], HyperPro [ON93], Rigi2 [MOTU93], the

Software Re�nery [NM93], and PCTE Workbench [AHF93]. These systems were chosen

because they are excellent examples of successful applications in their particular domain.

Our work is built upon the strengths and ideas espoused by these systems. The extensive

bibliography at the end of this dissertation complements this overview.

2We will focus on Rigi IV, the Rigi system circa 1992. The reason for this clari�cation will become

apparent in Chapter 3, where the implementation of the PHSE is discussed.

CHAPTER 1. INTRODUCTION 8

1.4.1 The HAM

The HAM is a general-purpose, transaction-based server developed at Tektronix for hyper-

text storage. Hypertext has been described as a tool to enhance human cognitive abilities by

allowing users to impose their own structure on information [Con87]. Although there is no

standard de�nition of hypertext in the current literature,3 it is generally accepted to be an

approach to organizing online information in a network structure. The network is composed

of nodes4 connected by links. Many of the essential notions of hypertext were �rst contained

in the descriptions of a memex, written by Vannevar Bush in 1945 [Bus45]: \A device in

which an individual stores books, records, and communications, and which is mechanized

so that it may be consulted with exceeding speed and
exibility. It is an enlarged intimate

supplement to memory." In most hypertext implementations, the nodes (and in some sys-

tems the network itself) are viewed and manipulated through an interactive browser and/or

structure editor. The relationships between di�erent pieces of information are represented

using links, which tie together two (or more) nodes. Among other things, links provide end

users with a means of navigation among nodes. Links may point to an entire node, or they

may be anchored to speci�c points or regions within a node. Both nodes and links may be

typed to allow for di�erent semantic interpretations of both node contents5 and link rela-

tions. Hypertext systems commonly allow the attachment of attributes to both nodes and

links. Such attributes are usually simple name/value bindings. Together, the nodes and

links form a hyperdocument. An important characteristic of hypertext is personalization

and customizability of information navigation and presentation; this incorporates the idea

3The ISO 10744 international standard does de�ne both hypertext and hypermedia in very broad terms.

4Nodes are sometimes called chunks, artifacts, or information objects.
5Hypertext has a more contemporary counterpart known as hypermedia [GT94], which describes hyper-

text systems with nodes that support multimedia information types. Hypermedia is a generalization of

the hypertext concept, and, like hypertext, there is no generally accepted de�nition, except that it blends

hypertext and multimedia. Most modern hypertext systems are, to varying degrees, hypermedia systems.

Within a hypermedia system, nodes may contain graphics, sounds, and video in addition to text. Although

the term \hypermedia" relegates the term \hypertext" to systems with text-only nodes, we use the term

\hypertext" to refer to both text-only and multimedia systems.

CHAPTER 1. INTRODUCTION 9

of nonlinearity, since nonlinearity gives control of the order of traversal to the user [Ash94].

The HAM provides a general and
exible data model based on graphs, which contain

hierarchically organized contexts, nodes, links, and attributes. A graph is the highest-level

HAM object; it contains one or more contexts. Contexts partition the data within a graph.

Each context has one parent context, zero or more child contexts, and contains zero or

more nodes and links. A node contains arbitrary data. Object semantics are provided

through user-de�ned attribute/value pairs, which can be attached to contexts, nodes, or

links. Attribute/value pairs extend the power of hypertext by allowing the organization of

nodes and links into subgraphs in a single context. Subsets of HAM objects may be extracted

from large graphs using a �ltering mechanism based on attribute predicates. The HAM's

commands are partitioned into seven categories of operations for creating, modifying, and

accessing its basic hypertext components.

The HAM is somewhat unique in that since it is not a hypertext system by itself,

but rather a general-purpose hypertext engine upon which other hypertext systems can

be constructed, it can serve hypertext systems in di�erent domains. For example, it has

been used to model Guide buttons [Gui86], Intermedia webs [YHMD88], and NoteCards

FileBoxes [Hal88]. It has also been used internally at Tektronix to develop a hypertext-

based CASE tool called Dynamic Design [Big88], and a hypertext-based CAD system called

Neptune [DS86]. The HAM represents an important step in the development of hypertext

systems due to its
exible architecture. However, its simple graph model has since been

superseded by more sophisticated databases that provide richer data modeling capabilities.

1.4.2 HyperPro

Osterbye et al. at Aalborg University in Denmark have blended literate programming

[Knu84] with hypertext, creating a hyperstructure programming environment. Their �rst

prototype hyperstructure environment was for CLOS (an object-oriented extension of Com-

mon Lisp) [Nor91], and their second was for Smalltalk [Ost93]. Based on this early work,

they developed HyperPro: a generic, language-independent hypertext environment which

CHAPTER 1. INTRODUCTION 10

can be parameterized to support di�erent programming languages.

The basic object in HyperPro is an entity, which can be either a link or a node (atomic

or composite). All entities possess a set of attribute/value pairs. A set of node and link

instances form a program network termed the hyperstructure. The layered architecture of

HyperPro is divided into three components: a repository, a Smalltalk kernel for control

integration, and a number of editors which are suitable front ends (including a graph editor

and the Epoch text editor, a hypermedia enhancement of Gnu Emacs).

HyperPro represents an important step in the evolution of hypertext systems due to its

programmable nature. However, its focus is on literate programming, not hyperstructure

understanding. Moreover, its dependency on Smalltalk limits its applicability.

1.4.3 Rigi

Rigi6 is a system for analyzing evolving software systems through reverse engineering. The

main goal of the Rigi project is to extract abstractions from software representations and

transfer this information into the minds of software engineers for software evolution pur-

poses. The focus is on summarizing, querying, representing, visualizing, and evaluating the

structure of large, evolving software systems.

Rigi is composed of three major subsystems: a parser (rigireverse) for selected common

programming languages of legacy software systems; a repository manager (rigiserver) that

stores the information extracted from the source code using the GRAS database [KSW93];

and an interactive graph editor (rigiedit) that permits graphical manipulation of source

code representations [MK88]. In the Rigi approach to software reverse engineering, the

�rst phase of the process|the extraction of software artifacts|is automatic and language-

dependent; it essentially involves parsing of the subject system and storing the artifacts

in a repository. The second phase is semi-automatic and features language-independent

subsystem composition methods that generate hierarchies of subsystems [MU90].

6Rigi, pronounced \riggy," is named after a mountain in central Switzerland.

CHAPTER 1. INTRODUCTION 11

Subsystem composition is the process of constructing composite software components

out of building blocks such as variables, procedures, and subsystems. Software quality cri-

teria and measures based on exact interfaces and established software engineering principles

such as low coupling and strong cohesion [Mye75] were formulated to evaluate the resultant

subsystem structures [M�ul90, MC91]. Using these subsystem composition facilities, which

are supported by the graph editor, software structures such as call graphs, module graphs,

and dependency graphs can be summarized, analyzed, and optimized according to software

engineering principles.

Rigi has been used in the discovery, reconstruction, and evaluation of subsystem struc-

tures in existing software systems [OMT92, MOTU93]; in the investigation of spatial and

visual relationships among software artifacts for program understanding [MTO+92]; to sup-

port a documentation strategy using up-to-date views7 [TMO92]; in an evaluation of the

use of structural views to support project management [Til92, TM93]; and as a test bed to

gain better understanding of the use of reverse engineering technologies for program under-

standing [MTW93]. It has proven itself successful and has attracted much attention during

demonstrations at several software engineering conferences around the world. However, by

1992, some of its shortcomings were becoming apparent.

The operations provided by Rigi's graph editor are rich because of parameterization,

but the total set is �xed. The implicit assumption within the editor is that the user is re-

verse engineering an application written in one of the imperative, procedural programming

languages commonly used in legacy software systems, such as C or COBOL; the target

language must �t the Rigi model [M�ul86]. Consequently, the operations are geared toward

coupling and cohesion as the guiding measurements used when selecting components to be

collapsed into a subsystem. The selection operations depend strongly on client/supplier

relationships. Moreover, the editor provides just a single abstraction mechanism for coping

with complexity: hierarchies formed through recursive aggregation. A further restriction is

7A view represents a particular state and display of a software model. Di�erent views of the same software

model can be used to address a variety of target audiences and applications. The Rigi notion of a views is

similar to that provided by the Improv spreadsheet [Imp91].

CHAPTER 1. INTRODUCTION 12

placed on the topology of the resultant subsystem compositions: they must be (k; 2)-partite

graphs|a class of layered graphs [EMM90]. This restriction was imposed to provide a

structuring mechanism to support navigation [M�ul89], but its forced presence is not al-

ways appropriate. The graph editor operations are language-independent, which is both

an advantage and a detriment. It is an advantage, since it means a single tool will work

for systems written in most imperative programming languages. It is a detriment because

it means domain knowledge is lost. Finally, the graph editor is completely graphical; it

does not provide any mechanism for automated command processing. Such an interface

paradigm does not scale up well when one is dealing with graphs that represent millions of

lines of code.

1.4.4 The Software Re�nery

The Software Re�nery from Reasoning Systems is a
exible reverse engineering toolkit

for software maintenance. It is composed of three parts: DIALECT (the parsing system),

REFINE (the object-oriented database and programming language), and INTERVISTA (the

user interface). The core of the Software Re�nery is the REFINE speci�cation and query

language, a multi-paradigm high-level programming language. Its syntax is reminiscent of

Lisp, but it also includes Prolog-like rules and support for set manipulation.

Much of the success of the Software Re�nery is due to its customizability. Tailored

versions are marketed for various application domains, such as REFINE/C for C programs.

While its user interface is somewhat limited, the parsing system is highly programmable,

making it an excellent choice when �ne-grained and detailed program analysis is required,

such as exact program transformation (its original purpose).

However, its direct applicability to HSU is somewhat limited. Although programmable,

the level of expertise required by the user is signi�cant. Typically, much e�ort is required

to produce a detailed domain model and parsing engine; after that, little programming

is done. This di�ers from the exploratory nature of HSU, where continuous interactive

experimentation by the user is the norm.

CHAPTER 1. INTRODUCTION 13

1.4.5 PCTE Workbench

PCTE Workbench from Vista Technologies is a toolkit for constructing hypermedia-based

environments and applications. It is an example of a system development environment ker-

nel: software development environments that typically do not provide users with any stand-

alone tools but rather provide a set of services for managing information, communications,

and user interfaces [Man93]. Using these services, users may construct more sophisticated

services and tools. Such extensible environment kernels provide varying degrees of control,

data, and presentation integration.

It is based on the Portable Common Tool Environment (PCTE), an initiative of the

European Strategic Programme for Research in Information Technology (ESPRIT), whose

goal is to provide an extensible hosting structure for tool integration and for the con-

struction of extensible system development environments [BGMT89]. At the storage level,

data integration in PCTE Workbench based on the PCTE Object Management System

(OMS) [GMT86], which in essence already supports a hypertext-like data model. Control

integration is provided by advanced broadcast messaging, built around an interpreter for

the object-oriented Lisp-based scripting language called HyperLisp. This language is also

used for presentation integration; the PCTE Workbench user interface may be customized

through HyperLisp access to the OSF/Motif toolkit. Among the pre-integrated tools which

are clients of the PCTEWorkbench server are a web editor (an outline processor interface to

the hyperbase), an adapted version of the Epoch text editor, and the FrameMaker system.

PCTE Workbench has been used to implement HyperWeb (originally called UDev

[FHS+92]), Door County (a geographic information database), and Adabra (an environ-

ment and framework for rapid prototyping in electronic packaging designs). HyperWeb is a

hypermedia-based software development environment to support general software develop-

ment and maintenance under UNIX. HyperWeb supports the notion that software should

be modeled as a richly interconnected \web" of information rather than as a collection of

isolated �les. The complex relationships between various software artifacts that comprise a

system are captured and explicitly represented using PCTE Workbench's hypermedia capa-

CHAPTER 1. INTRODUCTION 14

bilities and the underlying PCTE OMS object repository. The basic development process

supported by HyperWeb is an extension to the concept of literate programming. It involves

the import and export of information between UNIX and the PCTEWorkbench framework.

The tool integration facilities of PCTEWorkbench and the customization capabilities of the

HyperLisp scripting language are used to integrate existing UNIX tools into the HyperWeb

environment.

1.5 Dissertation outline

This chapter discussed the motivation for this research, described the problem being focused

on, outlined our approach to solving this problem, detailed our research objectives, and

reviewed related work. One of the main goals of this research is to integrate the potpourri

of technologies involved in end-user programming, conceptual modeling, hypertext, reverse

engineering, and application integration mechanisms into a uni�ed environment to support

HSU. Although there are numerous examples of systems that are well-suited to a particular

application area,8 there are few examples of systems that provide a general yet powerful

solution to HSU.

Chapter 2 details our approach to the problem: programmable reverse engineering.

The central issues in the design of a reverse engineering environment are �rst explored.

Three canonical activities in reverse engineering are identi�ed. The success of end-user

programming in other application domains is then discussed. The domain-retargetable

approach to reverse engineering is then presented. It integrates end-user programming,

conceptual modeling, and reverse engineering to provide a domain-retargetable solution to

HSU.

Chapter 3 describes the PHSE. The ring-based architecture of the PHSE is presented.

Each portion of the architecture directly supports one or more aspects of our domain-

retargetable approach to reverse engineering. The rationale for the use Telos as the PHSE's

8For example, there are many commercial software reverse engineering tools available; catalogs such as

[OS93, Zve94] describe several hundred such packages.

CHAPTER 1. INTRODUCTION 15

conceptual modeling language, and semantic networks as the foundation of the PHSE's

data model, is presented. A prototype implementation of the PHSE architecture is then

described.

Chapter 4 illustrates the use of the PHSE by retargeting it to two application domains.

The instantiation process for the prototype implementation is outlined. The �rst application

domain explored is online documentation. The problem of moving existing linear text into

a hypertext format is discussed. The problem of understanding legacy software systems

is the second application domain explored. The use of the PHSE to solve each of these

problems is described in turn.

Finally, Chapter 5 summarizes the contributions of this work, assesses the merits of the

results, and proposes possible directions for future research.

Chapter 2

Programmable reverse engineering

\It's only a small matter of programming ..."

| Bonnie Nardi [Nar93].

2.1 Introduction

This chapter describes three key issues in the design of a reverse engineering environment,

discusses the end-user programming phenomenon and its potential impact on reverse en-

gineering for hyperstructure understanding, and presents a new approach to reverse engi-

neering that achieves domain-retargetability through end-user programming.

To support HSU, a reverse engineering environment must address the disparity in users'

cognitive models, provide integration mechanisms to extend its functionality, and be retar-

getable to di�erent application domains. We identify three canonical activities that such

an environment must support in an extensible manner to meet these goals: data gather-

ing, knowledge organization, and information navigation, analysis, and presentation. The

impacts on the design of the environment, given these idealistic goals, are discussed.

Most applications make a strong distinction between its developers and its users, result-

ing in a system that is not as
exible as desired. End-user programming seeks to address

16

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 17

this de�ciency by allowing users of the application to tailor the tool to suit their needs. Pre-

sented is a discussion of the bene�ts of end-user programming, a description of application

areas where end-user programming has proven successful, and an outline of the scripting

languages used for end-user programming.

2.2 A reverse engineering environment design space

HSU is a process of inverse domain mapping. For example, in the program understanding

domain, programmers make use of programming knowledge, domain knowledge, and com-

prehension strategies when attempting to understand a program. They extract syntactic

knowledge from the source code, and rely on programming knowledge to form semantic

abstractions.

Brooks' work on the theory of domain bridging [Bro83] describes the programming pro-

cess as one of constructing mappings from a problem domain to an implementation domain,

possibly through multiple levels. Program understanding then involves reconstructing part

or all of these mappings. This process is expectation driven, and proceeds by creation, con-

�rmation, and re�nement of hypotheses. It requires both intra-domain and inter-domain

knowledge. A problem with this reverse mapping approach is that mapping from application

to implementation is one-to-many, as there are many ways of implementing a concept.

To aid HSU, a reverse engineering environment must make this reverse mapping process

easier by recovering lost information and making implicit information explicit. To do so, the

environment must be
exible in three areas: (1) it must support di�erent cognitive models

and understanding processes; (2) it must provide an extensible toolset; and (3) it must be

applicable to multiple domains. As illustrated in Figure 2.1, these three requirements form

a design space [Lan90] for reverse engineering environment issues. Each of these areas is

discussed in more detail below.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 18

ExtensibilityApplicability

Monolithic End-user programmableTask
specfic

General

purpose

Manual

Automatic

Automation level

Figure 2.1: Reverse engineering environment design space

2.2.1 Cognitive models and the understanding process

It is hard for any application designer to predict all the ways in which the application

will be used. For a reverse engineering environment to support HSU, the main goal is to

facilitate overall system comprehension. Since people learn in di�erent ways (for example,

goal-directed (top-down and inductive) versus scavenging (bottom-up and deductive)), the

environment should be
exible enough to support di�erent types of comprehension.

Two common approaches to system comprehension often cited in the literature are a

functional approach that emphasizes cognition by what the system does, and a behavioral

approach that emphasizes how the system works. For example, in the program understand-

ing domain, both top-down and bottom-up comprehension models have been used in an

attempt to de�ne how a software engineer understands a program. However, case studies

have shown that, in industry, maintainers of large-scale programs frequently switch between

several comprehension strategies [vMV92]. Thus, the environment must support the diverse

cognitive processes of HSU rather than impose a process that is not justi�ed by a cognitive

model other than that of the environment's developers.

While creating the semantic abstractions during the system comprehension process, it

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 19

should be possible to include human input and expertise in the decision making. There is

a tradeo� between what can be automated and what should or must be left to humans;

the best solution lies in a combination of the two. Hence, the construction of abstract rep-

resentations manually, semi-automatically, or automatically (where applicable), should be

possible. Through user-control, the comprehension process can be based on diverse criteria

such as business policies, tax laws, or other semantic information not directly accessible

from the gathered data.

2.2.2 Toolset extensibility

Most existing reverse engineering systems provide the user with a �xed set of capabilities.

While this set might be considered large by the system's producers, there will always be

users who want something else. One cannot predict which aspects of a system are important

for all users, and how these aspects should be documented, represented, and presented to

the user. This is an example of the trade-o� between open and closed systems. An open

system provides a few composable operations and mechanisms for user-de�ned extensions.

A closed system provides a \large" set of built-in facilities, but no way of extending the set.

Instead of a closed architecture, a successful reverse engineering environment should

provide a mechanism through which users can extend the system's functionality. There are

two basic approaches to constructing extensible integrated applications from a set of tools:

tool integration and tool composition [AHF93]. In tool integration, each tool must be aware

of the larger environment, and the inter-tool interactions are coded in the tools themselves.

This works for tightly-integrated environments, but in a loosely-coupled environment it is

very di�cult to achieve. In tool composition, tool interaction logic resides outside of the

tools. Each tool presents a standard, well-known interface to the outside world, and knows

nothing about its environment; the environment contains all the inter-tool coordination

logic.

From an end-user perspective, the reverse engineering environment should manage tool

composition, to facilitate the introduction of new tools into the system. This would allow

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 20

the user to provide their own tools for basic reverse engineering operations. These oper-

ations may be broken down into dealing with three types of HSU \artifacts:"1 (1) data,

which is the factual information used as a basis for reasoning, discussion, or calculation;

(2) knowledge, which is the sum of what is known and represents the body of truth, infor-

mation, and principles acquired; and (3) information, the communication or reception of

knowledge obtained from investigation, study, or instruction. Based on these de�nitions, we

can identify three canonical reverse engineering operation categories: (1) data gathering; (2)

knowledge organization; and (3) information navigation, analysis, and presentation. These

three operations are discussed below.

2.2.2.1 Data gathering

Gathering data from the subject system is an essential step in reverse engineering. The

raw data is used to identify a system's artifacts and relationships. Without it, higher-level

abstractions cannot be constructed.

Users should be able to indicate what artifacts they want gathered from the subject

system, how (and when) they want this data gathered, and how they wish to represent it.

This suggests the environment must facilitate the integration of data from sources other

than the subject system, and that it should support incrementality as well. For example,

the traditional approach to data gathering in a reverse engineering system for program

understanding is to parse the subject system's source code and extract complete abstract

syntax trees with a large number of �ne-grained syntactic objects and dependencies. To

accomplish this, many researchers have spent an inordinate amount of time building parsers

for various programming languages and dialects [Cah92]. However, there already exists

mature technology in the compiler arena to parse source code, perform syntactical analysis,

and produce cross-reference and other information usable by other tools, such as debuggers.

Thus, a reverse engineering environment should make use of this information whenever

possible, and avoid \reinventing the wheel."

1The de�nitions used here are in accordance with Webster's online dictionary.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 21

The user should be able to highlight important artifacts and relations in the data, and

de-emphasize or �lter out immaterial ones. This functionality is not just important from

an aesthetic point of view; it is also a matter of scalability. For very large systems, the

information generated during reverse engineering is prodigious. Simply presenting the user

with reams of data is insu�cient; knowledge is gained only through the understanding of

the data. In a sense, a key to HSU is deciding what information is material and what is

immaterial: knowing what to look for|and what to ignore [Sha89].

2.2.2.2 Knowledge organization

For HSU, gathered data must be put into a representation that facilitates e�cient storage

and retrieval, permits analysis of the artifacts and relationships, and yet re
ects the users'

perspective of the subject system's structure. This requirement|the need to organize data

in some well-de�ned and rigorous manner|led to the development of data models [Bor80]. A

data model captures the static and dynamic properties of an application needed to support

the desired data-related processes. An application can be characterized by static properties

(such as objects, attributes, and relationships among objects), dynamic properties (such

as operations on objects, operation properties, and relationships among operations), and

integrity constraints over objects and operations. The result of data modeling is a rep-

resentation that has two components: (1) static properties that are de�ned in a schema;

and (2) dynamic properties that are de�ned as speci�cations for transactions, queries, and

reports. A schema consists of a de�nition of all application object types, including their

attributes, relationships, and static constraints. Corresponding to the schema is a data

repository called a database, an instance of the schema. A data model provides a formal

basis for tools and techniques used to support data modeling.

The three best-known classical data models are the hierarchical data model, the network

data model, and the relational data model [Ull80]. The hierarchical data model is a direct

extension of a primitive �le-based data model; data is organized into simple tree structures.

The network model is a superset of the hierarchical model; the objects need not be tree-

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 22

structured. The relational model is quite di�erent from the hierarchical or network model;

it is based on the mathematical concept of a relation (a set of n-tuples), and organizes data

as a collection of tables. All three classical data models are instances of the record-based

logical data model [KS86].

Although well-suited to a computer environment, record-oriented data models are of-

ten semantically inadequate for modeling the application environment. They are highly

machine-oriented and organized for e�ciency of storage and retrieval operations; ease of

use for the non-programmer is of secondary importance. Typically, only two levels of ab-

straction are provided: the database schema, and the actual collection of records. There

are no provisions to extend the levels to a more general hierarchy of types, meta-types,

and instances, even though this extension would increase the model's expressive power and

provide a mechanism which supports the reuse of common properties. The hierarchical and

network models also do not support semantic relativism, which is the ability when modeling

a system to view the elements and concepts representing it from di�erent perspectives de-

pending on the application. In particular, the concepts of entity, relationship, and attribute

should be interchangeable. For these reasons, the classical data models are also known as

syntactic data models.

The lack of abstraction mechanisms provided by the classical data models is particularly

troublesome from an HSU point of view. Abstraction is a fundamental conceptual tool used

for organizing information. It plays a key role in managing one of the fundamental problems

with large-scale systems: complexity [Bro87]. When modeling such systems, the number of

objects and relations in the knowledge base can grow very large. A large knowledge base|

like a large software system|needs organizational principles to be understandable. Without

them, a knowledge base can be as unmanageable as a program written in a language that

has no abstraction facilities.

Abstraction is the selective emphasis on detail: speci�c details are suppressed and those

pertinent to the problem at hand are emphasized. Abstraction mechanisms serve as orga-

nization axes for structuring the knowledge base. They focus on high-level aspects of an

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 23

entity while concealing details. Three of the most common abstraction mechanisms used

are classi�cation, aggregation, and generalization [Sow88]:

Classi�cation: A form of abstraction in which an object type is de�ned as a set of in-

stances. Classi�cation captures common characteristics shared by a collection of ob-

jects, resulting in a generic object which captures the essential similarity among its

constituents. An instance-of relationship is established between an object type in the

schema and its instance in the knowledge base.

Aggregation: A form of abstraction in which a relationship between objects is considered

as a higher-level aggregate object. When considering the aggregate, speci�c details of

the constituent objects are suppressed. A part-of relationship is established between

the component objects and the aggregate object.

Generalization: A form of abstraction in which similar objects are related to a higher-level

generic object. The constituent objects are considered specializations of the generic

object. An is-a relationship is established between the specialized objects and the

generic object.

There have been two basic approaches to addressing some of the de�ciencies in the clas-

sical data models to \capture more of the semantics of an application" [Cod79]. Attempts

have been made to extend the classical models by building higher-level conceptual models

on top of them, and new more powerful semantic data models have also been developed to

capture database concepts at a more user-oriented level. Semantic data models, starting

with Abrial's semantic model [Abr74] and Chen's entity-relationship model [Che76], com-

bined simple knowledge representation techniques, often borrowed from semantic networks

[Fin79], with database technology. Semantic data models represent a shift in database re-

search away from the traditional record-oriented model towards models which support more

human-oriented semantic constructs. This shift is very similar to the goals in programming

language research focusing on abstraction mechanisms for software development, and arti-

�cial intelligence research into knowledge representation based on network representation

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 24

schemes [Gil90]. Conceptual modeling [BMS84] was introduced as a term re
ecting this

broader perspective.

Conceptual modeling is the activity of formally describing aspects of some information

space for the purpose of understanding and communication. Such descriptions are often

referred to as conceptual schemata. A conceptual model and a conceptual schema are

analogous to a data model and a database schema, respectively. One can think of data

models as special conceptual models where the intended subject matter consists of data

structures and associated operations. Classical data models, grounded on mathematical

and computer science concepts such as relations and records, o�er little to aid database

designers and users in interpreting the contents of a database.

Semantic data modeling shares purposes with conceptual modeling. However, semantic

data modeling introduces assumptions about the way conceptual schemata will be realized

on a physical machine (the \data modeling" dimension). Thus, semantic data modeling

can be seen as a more constrained activity than conceptual modeling, leading to simpler

notations, but also ones that are closer to the implementation.

The fundamental characteristic of conceptual modeling is that is it closer to the human

conceptualization of a problem domain than to a computer representation of the problem

domain [K�94]. The emphasis is on knowledge organization (modeling entities and their

semantic relationships) rather than on data organization. The descriptions that arise from

conceptual modeling activities are intended to be used by humans|not machines. Concepts

in a conceptual model are indexed by their semantic content. This di�ers from other data

models, such as relational, where the indexing scheme is more geared towards optimal

storage and information retrieval from the implementation perspective. This is one of the

main reasons that conceptual modeling is eminently suited to HSU: the focus on the end

user is paramount.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 25

2.2.2.3 Information navigation, analysis, and presentation

Information processing represents the most important of the three canonical reverse engi-

neering activities. While data gathering is required to begin the reverse engineering process,

and knowledge organization is needed to structure the data into a conceptual model of the

application domain, without the �nal step of information navigation, analysis, and pre-

sentation, there would be no bene�t to HSU. The user navigates through the hyperspace

that represents the information related to their application, analyzes this information with

respect to domain-speci�c evaluation criteria, and uses various presentation mechanisms to

clarify the resultant information.

Many complex systems are not linear, but consist of many interwoven aspects better

described using a multi-dimensional web of information artifacts [Mau92]. Unfortunately, as

the size of this information space grows, the well-known \lost in hyperspace" syndrome may

limit navigational e�ciency [MS88]. Moreover, it is di�cult to convey and communicate

the wealth of information generated as a result of reverse engineering. This problem is

exacerbated by the necessary coexistence of spatial and visual data. Theories of cognition

suggest that imagery involves both descriptive and depictive information [Kos80]. For

HSU, both spatial and visual information seem to play key roles in forming mental models

of structure. The spatial component constitutes information about the relative positions

of the artifacts in a neighborhood. It provides low-level, detailed information concerning

the immediate neighborhood of the artifact in a graphical representation that facilitates the

systematic exploration of the hyperstructure. The visual component preserves information

about how a neighborhood (or a set of neighborhoods) looks (e.g., size, shape, or density).

It provides a high-level view of the neighborhood; the essence of the entire image. Visual

graph representations (i.e., rendering of nodes and arcs in various formats in a workstation

window) aim to exploit the ability of the human visual system to recognize and appreciate

patterns and motifs (e.g., central, fringe, or isolated components).

Disorientation has been attributed to the tangle of links in the web [Nie90a]. The

proliferation of links is often due to the weak link discipline enforced by a system using a

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 26

simple node/link mechanism, allowing unrestricted linking among arbitrary objects [NN91].

Such linking is very powerful, but potentially disorienting [BHLT93]. The same freedom

which provides hypertext's
exible structure and browsing capabilities may also be the

direct cause of one of its greatest problems [BS91]. For users, disorientation may occur

when browsing. For authors, the lack of design principles when creating associative links

does not foster the creation of a consistent conceptual model [HKW91].

Some of the solutions that have been proposed to the classical problem of user disorien-

tation within a large information space include: maps, multiple windows, history lists, and

tour/path mechanisms [Nie90b]. Unfortunately, these methods do not scale up well. A more

successful approach is through the use of composite nodes; they reduce web complexity and

simplify its structure by clustering nodes together to form more abstract, aggregate objects

[CTL+91]. Composite nodes deal with sets of nodes as unique entities, separate from their

components.

To aid information retrieval for navigation it should be possible to augment the search

and selection operations built into the reverse engineering environment with user-de�ned

algorithms, and to interface with external tools as required. For example, in the program

understanding domain, change requests are often couched in terms of the end-user's view

of the application. Much of the e�ort involved in software maintenance is in locating the

relevant code fragments that implement the concepts in the application domain. One should

be able to use external tools that provide advanced searching techniques and have the results

of their searches made available to the user and the environment.

Analyzing the hyperstructure of the web can provide useful information. Various met-

rics and measures can be used to guide the creation of new artifacts in the information

space, such as virtual nodes representing concepts not explicitly represented in the gath-

ered data. The environment should support the integration of external analysis packages

that implement domain-speci�c metrics.

The goal of environmental customizability includes modi�cation of the system's interface

components such as buttons, dialogs, menus, scrollbars, and of the integration of external

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 27

tools that present the information in di�erent ways. Since the user interface is a crucial part

of the infrastructure of many software environments [YTT88], and since personal preferences

for things such as menu structure, mouse action, and system functionality di�er so much

from person to person (and from domain to domain), it is unlikely that any single choice

made by the tool builder will suit all users.

Presentation integration can occur at di�erent levels, including the window system, the

window manager, the toolkit used to build applications, and the toolkit's look and feel

[Was89]. The standardization provided by presentation integration lessens the \cognitive

surprise" experienced by users when switching between tools. However, what is really

needed is a way for the user to specify the common look and feel of the applications of

interest to them, or of tools that are part of an application [Kle88]. In other words, users

need to be able to impose their own personal taste on the common look and feel. This

re�nement of presentation integration moves the onus|and the opportunity|for reducing

cognitive overhead due to the user interface from the tool builder to the tool user.

Similarly, the way information is presented cannot be �xed by the environment. For

example, in the program understanding domain most reverse engineering systems provide

the user with a �xed set of view mechanisms, such as reference graphs and module charts.

While this set might be considered adequate by the system's producers, there will always be

users who want something else. It should be possible to create multiple, perhaps orthogonal,

hyperstructures and view them using a variety of mechanisms, such as using di�erent graph

layouts provided by external toolkits (e.g., [Ros94]).

2.2.3 Domain applicability

Because HSU involves many di�erent scenarios and target domains, it is wise to make the

approach as
exible as possible for use in many di�erent domains. One way of maximizing

the usefulness of a reverse engineering environment is to make it domain-speci�c. By doing

so, one can provide users with a system tailored to a certain task and exploit any features

that make performing this task easier. However, this approach limits the system's usefulness

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 28

to a particular domain. Using the same system on a di�erent task, even one that is similar,

may well be impossible.

An alternative to making the environment powerful by making it domain-speci�c, is to

make it domain-retargetable. One would like to make the approach as
exible as possible|a

subtle distinction from general. Software can be considered general if it can be used without

change; it is
exible if it can be easily adapted to be used in a variety of situations [Par79].

General solutions often su�er from poor performance or lack of features that limit their

usefulness. Flexible solutions may be tailored by the user to fully exploit aspects of the

problem that make its solution easier. In particular, the reverse engineering methodology

and supporting environment should be extensible, tailorable, and con�gurable.

It is essential that any approach to reverse engineering be applicable to large systems.

For example, e�ective approaches to program understanding must be applicable to huge,

multi-million line software systems. Such scale and complexity necessitates fundamentally

di�erent approaches than is used in other domains. For example, not all software artifacts

need to be stored in the repository; it may be perfectly acceptable to ignore certain de-

tails for program understanding tasks. Coarser-grained artifacts can be extracted, partial

systems can be incrementally investigated, and irrelevant parts can be ignored to obtain

manageable repositories. Knowledge organization, search strategies, and human-computer

interfaces that work on systems \in-the-small" often do not scale up. For very large systems,

the information accumulated during program understanding is staggering. To gain useful

knowledge, one must e�ectively summarize and abstract the information.

To achieve high functionality, many systems are targeted toward a single application do-

main, such as COBOL banking programs. While such systems are useful in their particular

area, they are not widely applicable in others. Many current software reverse engineering

environments support only relatively small programs. Others support just one programming

language (or a subset of it), usually because their parsing system, database, and support

environment are tightly coupled. This approach limits the application domain to small,

\pure" programs rarely found in practice. One must take a pragmatic point of view; if the

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 29

methodology does not work on real-world software systems, with all their \features," then

it will not make an impact on existing systems.

2.3 End-user programming

The traditional de�nition of programming takes the programmer's perspective: an activity

in which instructions are written in a language that is compiled or interpreted into the

application. From a user's perspective, a better de�nition is to de�ne programming by

its objectives: to create an application that serves some meaningful function for the user.

This task-speci�c approach attempts to capitalize on a user's strengths by exploiting their

skills and interests [Nar93]. The goal is to provide the user with as much
exibility as

possible in customizing the environment to suit their needs. One way of providing this

functionality is through end-user programming. This goal has lead to a veritable
ood of

end-user programmable applications, virtually all of which are task-speci�c.

2.3.1 End-user programmable applications

Such programmability has proven e�ective in numerous application domains, including

Computer-Aided Design (CAD), custom database applications, and statistical analysis

packages. The CAD system AutoCAD provides end-user programmability through its Au-

toLisp interface. Database systems such as dBASE may be programmed to extend built-in

functionality. Number-crunching packages such as Mathematica [Wol91] o�er a wide range

of mathematical, statistical, and combinatorial routines that users can build upon in their

analysis programs.

2.3.1.1 Personal computer applications

Perhaps the most widely used end-user programmable application available on personal

computers is the spreadsheet. The entry of values, formulas, and dependencies in a spread-

sheet is a form of programming well-suited to end-user exploitation. As feature-laden as

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 30

they are, spreadsheets such as Lotus 1-2-3 and Microsoft Excel also o�er macro languages

for expressing more elaborate sequences of computation. Business application suites are

also beginning to provide scripting languages as a kind of unifying coordination mecha-

nism. For example, Microsoft uses Visual Basic for Applications [Big93] as a common

extension language for its suite of o�ce applications, including Microsoft Word. Similarly,

Lotus provides LotusScript, a cross-application scripting language for their product o�er-

ings. Third-party applications permit the user to tailor the interface of di�erent products

from di�erent vendors to conform to their own particular stylistic guidelines (e.g., [Sof94]).

2.3.1.2 Text editors

Text editors are a classic example of the di�culties that application designers face because

of diverse user tastes and preferences. The question of which text editor is best is often the

topic of seemingly unending religious debate. Personal likes and dislikes mandate customiz-

ability in text editors, perhaps more so than any other application, due to their wide-spread

use.

Devotees of the vi editor that comes with UNIX [KM81] trumpet that it works well

with other UNIX tools. Disciples of emacs [Sta81] have praised the capabilities of its built-

in extension and customization facilities, provided through a variant of Lisp. Emacs was

constructed through the composition of separate and independent functions. By providing

access to the same language that was used to implement it, the user can customize the editor

by adding new or replacing existing commands and previous extensions. Its extensibility

has been proven: code browsers, mail readers, and news readers have been constructed on

top of the base editor.

Another extensible text editor is IBM's Xedit. It allows users to write REXX scripts to

extend its functionality beyond simple text processing. The choice of REXX as the scripting

language was guided by the fact that it is also the scripting language of choice on VM/CMS

(cf. Section 2.3.2.3), the original host operating system for Xedit (it has since been ported to

other platforms). Followers of more graphical user interfaces look to editors such as Alpha on

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 31

the Macintosh, or BRIEF (Basic Recon�gurable Interactive Editing Facility) [BRI] for DOS

and OS/2. Alpha incorporates an extension language based on Tcl. BRIEF's basic premise

is programmability: users can customize the editor by changing keystroke assignments and

modifying existing commands.

2.3.1.3 Operating systems

Operating systems represent another application area that incorporates end-user programma-

bility to facilitate ease of use. Most operating systems provide scripting languages that users

can write command procedures in. Some also provide lower-level command languages that

can be used to tailor the operating system itself. For example, IBM's MVS operating

system is extremely customizable, but it requires a skilled system programmer working in

System/370 assembler and JCL to exploit this capability [EV93].

If one judges success from the size of the potential user community, the batch facilities

provided by the MS-DOS command processor COMMAND.COM is the most successful. For

example, the �le AUTOEXEC.BAT (the script �le executed whenever MS-DOS is booted)

is typically altered by end users to launch their favorite applications and to con�gure the

system's characteristics. In fact, one could say that every MS-DOS command is simply a

single-command script.

UNIX is an adaptable, extensible, and nonspecialized operating system that is very de-

pendent on scripting languages. In fact, it provides several: command language interpreters

(shells) such as sh and csh; pattern matching languages such as sed and awk; and system

programming languages such as perl. UNIX provides a set of core programs for common

tasks; more complex tools are added to the UNIX toolkit by combining and connecting

existing tools in various combinations using the shell. The shell is an ordinary program, not

a system program; it can be changed or replaced by other versions if the user so desires. In

this way, UNIX is similar to emacs: core functionality may be extended or replaced by the

end user as needed.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 32

2.3.2 Scripting languages

In the past, end-user programming tools were sometimes called \macros" and \scripts,"

but they may also be thought of as very high level languages used to coordinate and glue

various applications together. End-user programming languages amplify the power of an

environment by allowing users to write scripts to extend the tool's facilities and to create

a more e�cient and customized environment. In e�ect, the creation of an \application

suite" can be accomplished by the end-user rather than the tool vendor(s). Unfortunately,

scripting languages can be as hard to use as conventional programming languages. They

may also be limited in three important ways: (1) there are too many of them; (2) they are

normally bound to a speci�c application; and (3) they don't always have the power and

exibility of traditional programming languages.

2.3.2.1 Tcl/Tk

Tcl (Tool Command Language) is a good example of an application-independent embedded

\universal scripting language." It provides an extendable core language, and was speci�cally

written as a command language for interactive windowing applications. It also provides

a convenient framework for control integration among Tcl-based tools. Each application

extends the Tcl core by implementing new commands that are indistinguishable from built-

in commands, but are speci�c to the application. Tk is an X11 toolkit companion to Tcl

that implements the Motif look-and-feel. It is similar in functionality to the Xm toolkit,

except the widgets may be programmed in Tcl rather than C.

2.3.2.2 HyperTalk and AppleScript

HyperTalk [Goo90] is the scripting language used to program HyperCard [Hyp89], an

application-independent hypertext system for the Apple Macintosh computer. A Hyper-

Card script is a sequence of English-like HyperTalk statements that de�ne a HyperCard

stack. The HyperTalk language allows end users to access and control certain aspects of

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 33

the Macintosh environment without having to delve into the complexities of the Mac Tool-

box. AppleScript is a newer and more general scripting language that allows end-users and

other applications to control applications that are AppleScript-aware.

2.3.2.3 Rexx

Rexx [Cow90] is a structured high-level language that was consciously designed to be easy

to read and write. Although �rst made commercially available by IBM for their VM/CMS

operating system in 1983 as a system-procedure language, and a replacement for the older

EXEC-2 language, Rexx has since been ported to MVS, UNIX, DOS, OS/2, and the Com-

modore Amiga. Rexx is application-independent and thus can act as a single scripting

language by all Rexx-aware applications that use the required interface. For example, on

VM/CMS the text editor Xedit may be programmed in Rexx; Amiga's under AmigaDOS

use ARexx as the primary scripting and integration mechanism; PC's under OS/2 use Rexx

in a similar manner.

2.3.3 Summary

Existing systems that o�er end users the capability to extend and customize their appli-

cations typically do so through a task-speci�c programming language. While extensible to

varying degrees, text editors such as vi, emacs, and BRIEF su�er from sometimes cryptic

command sequences and the need for the user to learn yet another programming language.

Even worse, the language they must learn is di�erent for each application. Editors such

as Alpha and Xedit rectify this problem somewhat by using embedded scripting languages

that are used in other applications. Some vendors are also taking this approach of using

common cross-platform and cross-application extension languages.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 34

2.4 Domain-retargetable reverse engineering

It has been repeatedly shown that no matter how much designers and programmers try to

anticipate and provide for users' needs, the e�ort will always fall short. This is not the fault

of the designers and programmers; in general, it is impossible to know in advance all that

will be needed. No one can foresee all the situations their systems and applications will

encounter; customizations, extensions, and new applications inevitably become necessary.

This lack of
exibility forces users to spend much of their time transferring their domain

knowledge to the application programmer. A better approach would be to allow the users

to exploit the domain knowledge themselves. Hence, the goal is to provide the user with as

much
exibility as possible in customizing the environment to suit their needs.

The three areas that a reverse engineering environment must be
exible in to support

HSU (cognitive models, toolset extensibility, and domain applicability) can be addressed

by providing the end user with the capability to program the environment. Given that

end-user programming has shown promise in other application domains, it seems natural

to apply a similar approach to HSU, particularly since the canonical activities for reverse

engineering to support HSU, as described in Section 2.2.2, lend themselves to customization.

By incorporating end-user programming into these key activities, the de�ciencies that exist

with other approaches can be alleviated.

We advocate a new approach to reverse engineering that re�nes the traditional two-

step approach of information extraction and abstraction as outlined in [Arn90]. The new

three-step approach is as follows:

1. Model: Construct domain-speci�c models of the application using conceptual mod-

eling techniques.

2. Extract: Gather the raw data from the subject system using the appropriate extrac-

tion mechanisms.

3. Abstract: Create abstractions that facilitate HSU and permit the navigation, anal-

ysis, and user-de�ned presentation of the resultant information structures.

CHAPTER 2. PROGRAMMABLE REVERSE ENGINEERING 35

The new approach achieves domain-retargetability through end-user programming. The

environment becomes user-oriented, not builder-oriented, since it allows the user to model

the application domain, to leverage their cognitive powers and domain knowledge, and to

extend the reverse engineering environment's toolset functionality and interface. Hence, the

environment's applicability, modeling capabilities, and analysis techniques are no longer lim-

ited by its original designers. The approach also permits a smooth transition to automatic

reverse engineering where appropriate.

2.5 Summary

This chapter described a new domain-retargetable approach to HSU that integrates concep-

tual modeling, reverse engineering, and end-user programming. Key issues in the design of

a reverse engineering environment were discussed, and three canonical reverse engineering

activities were identi�ed. A new interpretation of the term \programming," the success

of end-user programming in various application domains, and the use of various scripting

languages to extend program functionality were presented. The next chapter describes the

architecture for a meta reverse engineering environment that supports the new approach.

Chapter 3

The PHSE

\One of the problems with standards is that they must be general enough to
appeal to many di�erent users. How then to customize them for personal taste?
In the best of both worlds you'd be able to customize standard tools to best �t
your needs."

| Jane M. Tazelaar [Taz90].

3.1 Introduction

This chapter describes the programmable hyperstructure editor, a meta reverse engineering

environment framework. It supports the approach to domain-retargetable reverse engineer-

ing outlined in Chapter 2. The PHSE architecture, model, and prototype implementation

are presented.

The architecture of the PHSE supports the canonical reverse engineering operations

outlined in Section 2.2.2. It provides a programmable interface to its core functionality, to

its conceptual model, and to its user interface. The integration facilities provided by the

architecture are outlined.

The PHSE model provides the domain-independent conceptual schema that user's spe-

cialize for their application. Supporting the conceptual model is a data model based on

36

CHAPTER 3. THE PHSE 37

semantic networks. The rationale for the choice of the conceptual modeling language and

the implications on the use of a semantic network data model on the PHSE implementation

are discussed.

A prototype implementation of the PHSE is presented. Based on an existing envi-

ronment for reverse engineering, it faithfully supports the approach to reverse engineering

espoused in this research, implements a signi�cant portion of the PHSE architecture, and

supports the model. The hypertextual interface for navigating the information space is

described.

3.2 Architecture

Data gathering, knowledge organizing, and information navigation, analysis, and presen-

tation were identi�ed in Section 2.2.2 as canonical operations of the reverse engineering

process. To support end-user programmability of these operations, a core set of functional

components must be made available to both the user and other tools. These core compo-

nents must provide functionality upon which a more powerful and domain-speci�c toolset

may be constructed. This section outlines the architecture of a meta reverse engineering

environment that meets these objectives.

As illustrated in Figure 3.1, the service architecture of the PHSE is ring-based. Its

components directly address each of the basic reverse engineering operations stated above.

At the center of the architecture is the kernel, which is a script language interpreter. Just

outside the kernel, the core provides a minimal set of reverse engineering functionalities.

Beyond the core is the human and tool interface ring which provides presentation services

and access to external tools. The outer personality ring consists of domain-dependent scripts

and other HSU extensions. Beyond this outer ring the user can provide additional rings

that further extend the capabilities of the environment.

CHAPTER 3. THE PHSE 38

Human / Tool Interfaces

Domain-Specific Personality

Kernel

Gathering
Data

Organization
Knowledge

Navigation

Analysis

Presentation

Information

Figure 3.1: The PHSE's ring architecture

3.2.1 The kernel

The kernel is the centerpiece of the system that serves as a router to coordinate control

integration within the PHSE. It provides a consistent and system-wide basis for building

scriptable functionality. Although the architecture does not mandate the choice of any

particular embedded scripting language, it should address some of the de�ciencies outlined

in Section 2.3.2. For example, it should be in fairly common use in other applications, it

should be \easily" programmable by non-experts (if possible), and it should permit the

integration of applications written in other implementation languages.

3.2.2 The core

The core ring implements the canonical reverse engineering operations described above. The

data gathering component provides support for extracting artifacts from the subject system

and loading them into a knowledge base. The knowledge organization component provides

CHAPTER 3. THE PHSE 39

the user with conceptual modeling machinery for creating models of the application domain.

The information navigation, analysis, and presentation component provides the user with

tools for browsing and editing the hyperstructure representation of the subject system, for

analyzing selected aspects in the knowledge base, and for presenting information created

through the aforementioned analysis. The core components1 are registered with the kernel

and available to the user and external applications through the interface ring. Extensions

to the core make use of these capabilities to compose more powerful tools. These extensions

are also registered with the kernel and from then on treated the same as a core command.

In this way, the core operations can be enhanced, or even supplanted.

3.2.3 The interface ring

The interface ring provides access to the services provided by the PHSE. It separates user

interface concerns from the computational concerns of the core and kernel, providing in-

terfaces to the core components for both users and tools. The human interface supports

customization of the user interface, while the tool interface provides an application program

interface by which external tools can access the functionality of the core and the extended

functionality registered with the kernel.

3.2.4 The personality ring

Domain-retargetability is the capability of molding and adapting the PHSE to di�erent

domains. It is achieved through the personality ring, which provides domain-speci�c tools

and interfaces to its clients. In the personality ring, a user can extend the built-in core

operations with both domain-independent and domain-dependent algorithms. Domain-

independent extensions may re
ect personal choice of such things as the user interface,

while domain-speci�c extensions may incorporate new algorithms that augment the core.

For example, in the program understanding domain, the user may integrate external tools

1The toolset provided with the prototype implementation is described in Section 3.4.3.

CHAPTER 3. THE PHSE 40

for graph layout, complexity measures, pattern matching, slicing, clustering, and so on (or

they may choose to write these algorithms themselves in scripts).

3.2.5 Summary

The architecture of the PHSE directly addresses the main services previously identi�ed as

required by a reverse engineering system. The structure is strati�ed into rings, with a script

language kernel at the center. The core provides the backbone upon which extensions can

be built. The interface ring supports user interface customizability and access to editor

functionality by external tools. The personality ring supports domain-retargetability. The

PHSE architecture represents a meta reverse engineering environment. An instantiation of

the PHSE into a domain-speci�c reverse engineering environment can be constructed by the

end-user by adding domain-speci�c tools to those supplied by the PHSE core and gluing

them together with scripts.

3.3 Model

The PHSE model is composed of two parts:2 a conceptual model and a data model. The

conceptual model represents an organization of the artifacts and relations of complex hy-

perstructures. The PHSE model acquires its semantics when it is instantiated for a speci�c

application domain (cf. Chapter 4). The data model is the foundation upon which the

conceptual model is constructed. It is best characterized as a special purpose semantic

network.

3.3.1 Telos: A language for conceptual modeling

Telos is a conceptual modeling language designed to capture various kinds of knowledge

about information systems. It integrates concepts from knowledge representation, semantic

2The mechanism used for storing the data model in a physical knowledge base in the prototype imple-

mentation of the PHSE is described in Section 3.4.2.

CHAPTER 3. THE PHSE 41

networks, deductive and temporal databases, software engineering, and structurally object-

oriented programming languages. This section gives a simpli�ed overview of Telos. Two

components of Telos not discussed here are the representation of temporal knowledge and

the representation of assertional knowledge. For a more detailed description of Telos, see

[KMSB89, MBJK90, Myl91].

3.3.1.1 The representational framework

The representational framework of Telos generalizes graph-theoretic data structures used in

semantic networks, semantic data models such as the entity-relationship model, and object-

oriented representations, by providing a single modeling unit, named proposition. Every

Telos knowledge base is a collection of propositions, which can be divided into two disjoint

kinds: individuals (sometimes called an entity, concept, or node in other formalisms), and

attributes (sometimes called a relationship or link). An individual may represent a concrete

real-world entity such as Eric Cantona or an abstract entity such as Football Team. An

attribute represents a binary relation between pairs of propositions.

Formally, propositions are 3-tuples3 with components from, label, and to denoting the

source, label, and destination propositions; these components are themselves propositions.

For example, Attendance is represented as

Attendance = <Football Team, attendance, Integer>

Thus, Attendance is the name of the proposition de�ned by the 3-tuple. Similarly, individuals

are represented as 3-tuples. For example, Football Team is represented as

Football Team := <Football Team, ..., Football Team>

Individuals are self-referential. Labels of individuals are not signi�cant. Since components

of a proposition that are not of interest to us are denoted by the ellipsis (...), the label of

the Football Team proposition is therefore represented by

3Telos propositions are in fact 4-tuples, with when as the fourth component, denoting the duration of

the proposition. Temporal knowledge is not part of the current PHSE model.

CHAPTER 3. THE PHSE 42

A collection of attributes that have a common source proposition is a structured object.

For example, a structured object with the common source Football Team can be represented

by the following attributes:

Attendance := <Football Team, attendance, Integer>

Players := <Football Team, players, Person>

Coach := <Football Team, coach, Person>

Home Field := <Football Team, home �eld, String>

These attributes de�ne the individual Football Team to consist of the attributes Attendance,

Players, Coach, and Home Field. This is a form of implicit aggregation. Hence, we do

not have to use an explicit aggregation construct that connects attributes to the source

proposition. In addition to structuring objects through aggregation, Telos supports two

other important structuring mechanisms: classi�cation (and its inverse instantiation) and

generalization (and its inverse specialization).

3.3.1.2 The classi�cation dimension

Classi�cation relates a class of propositions with speci�c instances of the class. A class

determines the kinds of attributes and the properties of the instances. For example, since

Manchester United is an instance of Football Team, it will have attributes Attendance, Players,

Coach, and Home Field, and the following de�nition of Manchester United conforms to these

attributes:

<Manchester United, attendance, 1000000>

<Manchester United, players, Eric Cantona>

<Manchester United, players, Lee Sharpe>

<Manchester United, coach, Alex Ferguson>

<Manchester United, home �eld, Old Traford>

CHAPTER 3. THE PHSE 43

An important classi�cation constraint that is satis�ed by this de�nition ofManchester United

is that the attributes of Manchester United are instances of the attributes of Football Team.

For example,

<Football Team, coach, Person>

*

instance-of

*

<Manchester United, coach, Alex Ferguson>

Classi�cation is based on an in�nite proposition dimension that can be classi�ed into to-

kens (propositions having no instances, such asManchester United), simple classes (proposi-

tions having only tokens as instances, such as Football Team), andmeta classes (propositions

having only simple classes as instances), and so on. The Telos framework accommodates an

in�nite number of such classi�cation levels, with each level containing instances of classes

in the subsequent level, forming instance-of instantiation hierarchies. For example, meta

meta classes have meta classes as instances. The only exceptions to this rule are ! classes,

which have objects at any levels as instances. ! classes are used to provide a framework

for modeling the commonality between all the instantiation levels. For example, the ! class

Proposition provides a formal way of tying together all the propositions in a Telos knowl-

edge base, since all propositions are instances of the ! class Proposition (including itself).

Knowledge engineers who are building conceptual models of the real world will not typically

de�ne additional ! classes. In fact, most real-world modeling takes place at the token and

simple class levels.

In addition to the ! classes, Telos comes with the following pre-de�ned classes: Token,

a simple class that has all tokens as instances; SimpleClass, a meta class that has all simple

classes as instances; andMetaClass, a meta meta class that has all meta classes as instances.

This list goes on for all required classi�cation levels.

CHAPTER 3. THE PHSE 44

3.3.1.3 The generalization dimension

Orthogonal to the classi�cation dimension, classes can be specialized through generalization,

forming is-a specialization hierarchies (with the exception of the token level). For example,

Football Team is a specialization of the class Team:

<Team, ..., ...>

*

is-a

*

<Football Team, ..., ...>

Only classes residing on the same classi�cation level can be is-a related. Non-token at-

tributes of a class are inherited by its specializations. Telos supports multiple inheritance,

permitting a class that is a specialization of more than one class to inherit the attributes of

all its generalizations.4 Attributes that are inherited by a class can be specialized to re
ect

the semantics of the specialized class more accurately.

3.3.1.4 The attribute mechanism

As shown above, every proposition can have attributes associated with it. One of the novel

features of Telos is that attributes are also represented by propositions; therefore, they

can be instantiated, specialized, and have attributes of their own. This, together with its

assertion language, provides the basis for Telos' extensibility.

In terms of proposition representation, the existence of an attribute class enables the

creation of attribute tokens for the instances of its source component. For example, the

builtin class

Attribute := <Proposition, attribute, Proposition>

4A special Telos clause may be used to get around the problem of ambiguous attribute inheritance.

CHAPTER 3. THE PHSE 45

enables us to create an attribute of an instance of a Proposition with the attribute category

attribute. This in turn enables the creation of attribute categories for the subclass.

3.3.1.5 Rationale

Telos was selected over other modeling languages because it is more expressive with respect

to attributes, it is extensible through its treatment of metaclasses, and it has already proven

successful in other application domains. For example, it has been used to provide a struc-

tural framework for an authoring-in-the-large hypertext system [Sob91], and to perform

requirements analysis in a software engineering environment DAIDA [JMSV91].

The primitive units of Telos, individuals and attributes, have a direct mapping to the

primitive units of hypertext, namely nodes and links. Furthermore, attributes are treated

as \�rst class citizens" when it comes to the built-in domain-independent structuring mech-

anisms for aggregating, classifying, and generalizing artifacts. This results in a uniform

framework and provides solutions to the knowledge organization issues discussed in Sec-

tion 2.2.2.2.

Telos' meta-modeling facilities for describing structures unique to a domain means that

it can represent a wide variety of conceptual models. Although not used in the current real-

ization of the PHSE, its assertion language, integrity constraint mechanism, and deductive

rules for re�ning the structural knowledge of Telos, and its facilities for representing and

reasoning about temporal knowledge, also provide additional bene�ts.

3.3.2 Conceptual model

The PHSE conceptual model is the basis upon which users construct domain-speci�c models.

As illustrated in Figure 3.2, it is relatively minimal, due in part to the fact that Telos is

used in its speci�cation. Telos provides most of the modeling and knowledge organization

facilities required; only a few extra artifacts and attributes are needed.

The central component in the PHSE conceptual model is the PHSEObject; everything

is derived from it. It is a SimpleClass object, an instantiation of the PHSEObjectClass

CHAPTER 3. THE PHSE 46

PHSEObject
PHSEWeb

SimpleClass

PHSEObjectClassMetaClass

attribute necessary single:id Integer
attribute:annotation Proposition

Figure 3.2: The PHSE schema

meta class, with two attributes: a unique identi�er (the primary search key) and a set

of annotations. No other constraint is placed on a PHSE object. The only other special

component is the PHSEWeb, an unordered collection of PHSEObjects; its use is discussed

in Sections 3.3.3 and 3.4.3.3. A complete listing of the Telos speci�cation of the PHSE

conceptual model is given in Appendix B.

3.3.3 Data model

The PHSE data model, upon which the conceptual model is built, is a general-purpose

semantic network, represented as an attributed graph. Attributed graphs are well suited

to represent structured sets of data artifacts [Roh87]. In its most basic form, a semantic

network represents knowledge in terms of a collection of objects (representing concepts) and

binary associations (representing binary relations over these concepts). According to this

view, a knowledge base is a collection of objects and relations de�ned over them [ML84].

The semantics of the model are a careful de�nition of the meaning and usage of the nodes

and arcs. In the PHSE data model, both artifacts (represented as nodes) and relations

(represented as arcs) are specializations of the PHSEObject class. Modi�cations to the

knowledge base occur through the insertion or deletion of objects and the manipulation of

relations.

The use of a network data model has at least three advantages related to navigating,

structuring, and visualizing the knowledge base. The �rst advantage is that the network

data structures that encode information may themselves serve as a guide for information

retrieval [Hen79]. The association between artifacts de�nes implicit access paths. The

CHAPTER 3. THE PHSE 47

fundamental assumption in the use of semantic networks is that all information about a

given conceptual entity is reachable from a common place [SGC79].

The second advantage is the use of the organizational principles described in Sec-

tion 2.2.2.2 to structure the knowledge base. The abstraction mechanisms classi�cation,

aggregation, and generalization capture the natural structure of the artifacts in the system,

their properties, and the relationships among them [Alb89]. They can also be used recur-

sively to construct abstraction hierarchies [PCW85, Was85]. Such taxonomic organization

is an essential human activity that allows us to cope with multitudes of detail [BMW84].

The third advantage is that network representation schemes lend themselves to a graphi-

cal notation that can be used to depict knowledge bases and increase their understandability.

The popularity of entity-relationship diagrams to model an enterprise is an excellent exam-

ple. Most human beings visualize structure graphically. Designers often describe system

architecture using block diagrams of the major system components and labels that refer

to their major functions. Modern interactive systems with graphical display capabilities

facilitate the direct manipulation, processing, and presentation of information in graphical

form.

The PHSE data model consists of four objects: webs, nodes, links, and attributes. A

web is a subset of the entire knowledge base that is related is some fashion. It is composed

of typed nodes representing artifacts and typed arcs representing relations. Each node has

a set of incoming arcs and a set of outgoing arcs. A node represents an artifact in the target

domain. Links between nodes represent relations between artifacts.

Nodes and links may exist simultaneously in one or more webs. For example, in the

program understanding domain, a node representing a C++ function may be part of a web

of functions that call one another, part of a web of member functions for a class, and a web

of overloaded functions. This permits object sharing and facilitates multiple views of the

data. An example of several webs is shown in Figure 3.8. In the �gure, the stippling of the

arcs and nodes represents di�erent arc and node types, respectively. The singleton node in

the selected set is part of (at least) three di�erent webs visible in the �gure.

CHAPTER 3. THE PHSE 48

Object semantics are provided through user-de�ned attribute/value pairs, which can

be attached to nodes or links. Attribute/value pairs permit the organization of nodes and

links into subgraphs and webs. For example, subsets of objects may be extracted from large

graphs using �ltering mechanisms based on attribute predicates.

3.4 Realization

This section discusses the realization of the PHSE. The high-level application programming

interface (API) is outlined. All core functions registered with the kernel are provided in

a series of startup �les that the editor loads upon invocation. The implementation of the

PHSE prototype as an evolution of an existing environment for reverse engineering is de-

scribed. By building on previous work, the prototype's functionality was greatly increased,

and the time to develop the prototype was similarly decreased. Finally, the standard toolset

provided by the PHSE is detailed. Operations for each canonical reverse engineering cate-

gory of data gathering, knowledge organization, and information navigation, analysis, and

presentation and provided by the PHSE; their implementation and use is illustrated. More

real-world examples of the PHSE's use will be provided in the next chapter.

3.4.1 API

The interface ring described in Section 3.2 provides access to the operations provided by

the core of the PHSE. These operations may be categorized as atomic and composite. Both

are domain-independent. The atomic operations are grouped into two major components:

information model and user interface. Operations on the information model include create

operations to create new objects, delete operations to destroy objects, get operations to

retrieve data from artifacts, or to retrieve artifacts from the knowledge base, set operations

to modify data associated with an existing artifact, and miscellaneous operations that do

not �t into any of these categories.

Composite operations are built on top of the atomic operations. They make use of

CHAPTER 3. THE PHSE 49

object attributes in a domain-independent way that is suitable for HSU. The interpretation

of object attributes is left to the client of the composite operations. Examples of composite

operations include selecting artifacts based on some attribute (either the existence of the

attribute or the attribute's value), �ltering objects from the current neighborhood5 view

(see below), and loading and saving a neighborhood to an external application.

All domain-dependent operations are built on top of a combination of the atomic and

composite operations provided by the core. Users may extend the functionality of the core in

both a domain-independent and a domain-dependent manner. By extending the operations

in a domain-independent manner, the user can provide more operations that, for example,

display nodes using various layout algorithms that rely solely on graph-theoretic, and hence

domain-independent, information. By extending the operations in a domain-dependent

manner, the user tailors the PHSE to a particular task or set of tasks.

3.4.2 Implementation

A prototype version of the PHSE was implemented by retro�tting the PHSE architecture

onto Rigi IV, the Rigi system discussed in Section 1.4.3, resulting in Rigi V. It consists of

roughly 7,500 lines of RCL code that sits on top of the C++ code that comprises rigiedit. The

evolution of Rigi IV into Rigi V was a three-step process. The �rst step was to make rigiedit

scriptable [TWMS93]. The second step was to make the user interface customizable [Til94].

The third step was to integrate a conceptual modeling capability into the editor. Selected

implementation details on all three steps of this process are provided in Appendix A.

3.4.2.1 Core functionality

RCL (Rigi C ommand Language) is the scripting language used to form the extensible

PHSE kernel. Rather than writing yet another command language, RCL is implemented

on top of Tcl. As discussed in Section 2.3.2.1, Tcl provides an extendable core langauge,

5Neighborhoods are described in Section 3.4.3.3.

CHAPTER 3. THE PHSE 50

and was speci�cally written as a command language for interactive windowing applications.

It also provides a convenient framework for communicating between Tcl-based tools. Each

application extends the Tcl core by implementing new commands that are indistinguishable

from built-in commands, but are speci�c to the application. These new commands may be

implemented in languages such as C, C++, or Scheme, or as interpreted Tcl scripts. Tcl is

application-independent and provides two complementary interfaces: a textual interface to

users who issue Tcl commands, and a procedural interface to the application in which it is

embedded.

3.4.2.2 User interface

Although the PHSE architecture does not mandate the choice of any particular script-

ing language in its implementation, Tcl seemed a good choice given the implementation

environment6 and the existing user base of Tcl programmers. An added advantage of using

Tcl as the basis for the scripting language is that it can be used in conjunction with the Tk

toolkit to customize the environment's interface. All of the system's interface components

can be con�gured using RCL commands. This makes it possible for users to write Tcl pro-

grams to personalize the layout and appearance of the environment as desired. For example,

users can rebind keystrokes, change mouse buttons, or replace an existing operation with

a more complex one speci�ed as a set of RCL commands. Moreover, since the scripting

language is interpreted, the graphical user interface can be dynamically altered by using

the appropriate RCL commands.

6Hardware consisting of Sun 4's and IBM RS/6000's, software consisting of UNIX, X windows,

OSF/Motif.

CHAPTER 3. THE PHSE 51

3.4.2.3 Model

A Telos implementation is not part of the Rigi V prototype.7 In its place, the PHSE model

is implemented at the database physical level as a store of binary relations, similar to the

mechanism used in [BDTTJ94]. The user speci�es the domain model in a set of �les using

a simpli�ed mechanism for describing the artifacts, entities, and attributes that constitute

a knowledge base; details are provided in Section A.2.3.

The binary relations that represent the knowledge base are stored in one or more �les as

a series of RSF (Rigi Standard Format) triples. Each triple is of the form type subject object.

The interpretation of this relation is straightforward: a directed relation of the type `type'

is asserted between the subject and the object. Using this simple binary mechanism, both

intensional and extensional information are represented. Intensional information de�nes the

structure of the information (the schema of the knowledge base, interpreted as meta-data),

while the extensional information comprises the actual occurrences of relationships (the

instance of the knowledge base; interpreted as data) . In this way, an RSF representation

of the knowledge base can be used to represent all Telos propositions, from meta classes

to tokens, in a uniform manner. It also implies that a knowledge base can encode its own

schema, bootstrapping itself by providing its own semantics, making it portable.

For example, in the program understanding domain, the RSF triple call foo bar might

indicate the existence of a call relationship between the function foo and the function bar.

Likewise, the RSF triple in function foo could indicate that foo is an instance of the function

class. The other structuring mechanisms provided by Telos can also be represented as RSF

triples, for example, aggregation using member and specialization using isa.

Since every n-ary relation can be expressed as a conjunction of n + 1 binary relations

[Kow79], the RSF mechanism is su�cient to store the information required by the PHSE.

7A su�ciently robust implementation of Telos was unavailable at the time. However, the modeling capa-

bilities of Telos are still used in the PHSE; they are just implemented in the Rigi V prototype in a di�erent

manner. A full Telos implementation is integrated in a larger environment for program understanding,

described in Section 5.4.

CHAPTER 3. THE PHSE 52

Figure 3.3: The PHSE toolset

Its simplicity also permits the facile translation to and from other data formats (such as

Prolog facts), the incorporation of retrieval improvement techniques (such as inverted lists

or B-trees), and the use of dedicated tuple engines (such as qddb [HF94]) into the PHSE

toolset.

3.4.3 Toolset

The prototype implementation of the PHSE provides support for all key aspects of the ar-

chitecture. It provides a variety of tools for loading, saving, and exchanging knowledge base

artifacts with other tools. It permits dynamic domain switching. Perhaps the richest com-

ponent of the prototype is the information editor: it facilitates the navigation, analysis, and

presentation of information in the knowledge base in a multi-window graphically-oriented

manner.

CHAPTER 3. THE PHSE 53

3.4.3.1 Data gathering

The operations provided for data gathering permit the user to load and save a knowledge

base in a variety of formats, to clear the knowledge base, and to update the knowledge base.

The formats currently supported include GEF, GXF, RSF, Telos, and Tess. End users can

extend this list as they see �t.

GEF is a format used in the GraphEd graph layout package [Him93]; it can be used to

display webs in a variety of layouts (cf. Section 3.4.3.3). GXF [Eig93] is another graph

exchange format used in several research groups, such as Hy+ [CMR92], MacroScope

[KLO+93], and computational geometry [Lyo94]. RSF is the primary means of loading

or saving a knowledge base. Telos S-expression format may also be used to load or save the

knowledge base (or selected portions). Finally, Tess format is used to communicate with a

computational geometry package (see below) [Won91].

Data is loaded or saved to and from the knowledge base, or from a speci�c neighborhood,

as directed. For example, the user may wish to save the entire knowledge base in Telos

format, or save just a current neighborhood for exporting to an o�ine graph layout server.

The clear operation empties and initializes a knowledge base, while the update operation

causes the knowledge base to be updated to re
ect the current neighborhood (see the

discussion on web splicing in Section 3.4.3.3).

Although RSF is currently the format most commonly used when loading and saving a

knowledge base, there is no reason why end users could not use RCL or any other proce-

dural interface. For example, existing RSF tuple streams could be processed by the RCL

interpreter by simply sourcing the �le (assuming the user had provided procedures for each

relation). The �rst element of the RSF tuple could be taken as a procedure name, say

call, which takes two arguments, caller and callee. An RSF stream of call caller callee

relations would then be interpreted as a series of invocations of the call procedure, which

would in turn create the necessary nodes and arcs in the knowledge base by calling neces-

sary PHSE core operations. This mechanism could be extended to non-RSF streams and

di�erent paradigms, for example, object-oriented using [incr tcl] [McL94].

CHAPTER 3. THE PHSE 54

Figure 3.4: Displaying active RCL variables and procedures

3.4.3.2 Knowledge organization

The operations supplied under the knowledge organization moniker include retargeting the

PHSE to a new domain, interrogating the values of RCL variables and procedures active in

the current environment, and viewing the current schema. Retargeting the PHSE to a new

domain causes the current knowledge base to be cleared, a new one to be optionally loaded,

and a new set of domain-speci�c interface routines to be created (based on RCL routines

provided by the user).

Figure 3.4 illustrates the use of the RCL variable and procedure display widget. The

user has listed all procedures that match the regular expression data save* and has chosen

to view the body of the data save telos sexpr procedure. The editor used is point,

a Tcl/Tk-enabled text editor [Cro94]. It has been augmented with an update operation

that facilitates exploratory RCL coding when using the PHSE. The text being edited is

a dynamically constructed version of the procedure's body.8 The update operation uses

8Produced through Tcl's info command.

CHAPTER 3. THE PHSE 55

Figure 3.5: A neighborhood

Tcl's send command to instruct the PHSE to \source" the temporary �le. In this way, the

functionality of an existing procedure can be changed on the
y. The RCL editor operation

also invokes the point editor on a user-speci�ed �le, enabling the users to create new RCL

procedures in a similar manner.

The schema browser can be used to view the conceptual model for the current domain,

and instances of the schema (i.e., the active knowledge base) if desired. The browser is

based on a prototype from the University of Toronto. An example of it in use is shown in

Figure 3.2; further examples will be provided in Chapter 4.

3.4.3.3 Information navigation, analysis, presentation

The information component of the PHSE is a graphical, hypertext-oriented, multi-window

hyperstructure editor. As discussed in Section 3.3.3, hypertext is a suitable paradigm for

visualizing and understanding the structure of large information spaces. Interrelated webs

of objects form the cornerstone of the PHSE information paradigm.

CHAPTER 3. THE PHSE 56

Portions (or all) of a web are viewed by the user as a neighborhood. A neighborhood

is simply a collection of artifacts that are immediately accessible from the current perspec-

tive. It is graphically represented in the PHSE by a single window containing the artifacts,

as shown in Figure 3.5.9 Artifacts can exist in any number of neighborhoods simultane-

ously, since neighborhoods are simply dynamically computed perspectives of the underlying

knowledge base. This permits multiple, co-existing views of the information space.

To accelerate web traversal and aid information access and retrieval, strands may be

used. Strands are nodes that act as \bookmarks" or quick entry points into a web. Each

node in the knowledge base has a binary `strand' attribute. If set, the node also exists in

a special neighborhood of strands. They can be reached and edited by using the strand

editor: a window that simply displays all current strands. One can think of strands as

pieces of a web that dangle outside its normal boundary, that one can get a \handle" on.

Navigation

Information navigation involves three subcomponents: selection, editing, and traversal.

Artifacts are selected by the user according to various criteria, including visual and spatial

cues, attributes, and structural properties. A node may be selected by a single mouse click

(default action), or by rubber-banding around a set of nodes in a neighborhood.

In addition to the simple selection routines for selecting all nodes in the current neigh-

borhood, deselecting all nodes in the current neighborhood, and inverting the current se-

lection, widgets are also provided for attribute-based and structure-based selection. These

widgets are shown in Figure 3.6; the menus for attribute, node type, arc type and direc-

tion, and comparison are torn o� to show the possible choices available to the user (the

choices shown as menu items are constructed automatically from the domain model speci�-

cation). Attribute-based selection permits the user to identify artifacts that have particular

attributes of speci�ed values. Structure-based selection permits the user to identify artifacts

that meet speci�ed structural criteria (for example, all nodes with two or more incoming

9This �gure actually contains more than a simple neighborhood display; see the discussion on information

presentation below.

CHAPTER 3. THE PHSE 57

Figure 3.6: Attribute- and structure-based selection widgets

call arcs). For both methods, there are options to search beyond the current neighborhood

into the rest of the knowledge base (Search KB), and to non-destructively add to the current

selection set (Keep). Other, more advanced and/or domain-speci�c selection techniques can

be added by the user. For example, in the program understanding domain, the SCRU-

PLE pattern matching engine [Pau92] may be invoked to identify artifacts with certain

syntactical patterns in their associated source code �les.

Editing the web involves creating new artifacts, deleting existing ones, or changing an

artifact's attributes. The attributes of individual artifacts may be altered using the attribute

editor widget (not shown). New arcs may be created graphically by drawing a line between

two nodes in a neighborhood window. New nodes may be created using the web edit widget.

It provides several mechanisms for altering webs, for creating new strands, and for changing

the structure of the knowledge base itself. The web edit widget is shown in Figure 3.7.

Operations take place either in the current neighborhood or to and from the clipboard.

Operations in the current neighborhood involve either the creation of a single node, or

the deletion of the set of selected nodes. In the simplest case, a new node is temporarily

inserted into the current neighborhood. The node's name and type may be set by the user;

CHAPTER 3. THE PHSE 58

Figure 3.7: Web edit widget

by default they take the values new and the current nodetype value. If the strand option is

speci�ed, then the new node is also made a strand. If the splice option is speci�ed, then for

each arctype in the current inarcset,10 a new arc is created from each parent of the current

neighborhood to the new node.

If a node set is being deleted, then there are two options. If splicing is not speci�ed,

then each node in the currently selected set, and each arc either incoming or outgoing of

each node, is deleted from the knowledge base. If splicing is speci�ed, then each member of

the selected set is detached from each parent of the neighborhood by deleting all arcs of the

types speci�ed in the inarcset between each parent and each member. Each parent is then

connected to each child of each node in the selected set (children are the nodes connected

by outgoing arcs of the current outarcset of the currently selected node) by each arc in the

current inarcset. A check is then made to see if each member of the selected set was a

member of any other web using the current inarcset; if not, then each outgoing arc of the

type speci�ed in the outarcset is deleted. This check is necessary to ensure that children

of the currently selected set are still accessible from other webs after the deletion if they

were accessible before. After this check, if there are no incoming arcs of any type for each

10The PHSE maintains two active sets of arcs. The inarcset is the set of incoming arc types, and the

outarcset is the set of outgoing arc types.

CHAPTER 3. THE PHSE 59

==>

Legend:

in arcset:

out arcset:

parents:

previous neighborhood:

current neighborhood:

selected set:

Figure 3.8: Web splicing

member of the selected set, then the node can be safely deleted (it has become orphaned).

This process is illustrated in Figure 3.8. A portion of the RCL code for web deletion is

shown in Appendix C.

The update option causes the current neighborhood to be redisplayed. If no splicing

took place, it will usually be the same as before. However, if nodes were spliced either into

or out of the current web, then when the neighborhood is redisplayed the nodes may no

longer be part of the display. See the discussion on navigation below for an example.

If the currently selected set of artifacts are cut from the current neighborhood to the

clipboard, a reference to each node is placed in the clipboard, and all incoming arcs of

the type speci�ed in the current inarcset from each node to each parent of the current

neighborhood are deleted. If copy is chosen, then references to the nodes are placed in the

clipboard, but no arcs are deleted. The paste operation causes all members in the clipboard

to be inserted into the current neighborhood by connecting each parent to each member of

the clipboard by all arctypes in the current inarcset. The user can also view the clipboard

CHAPTER 3. THE PHSE 60

Figure 3.9: Web traversal widget

neighborhood, and clear the clipboard.

Traversing the web involves moving from one neighborhood to another. All traversal

operations are based on the currently selected set of nodes. By default, double-clicking on a

single node invokes the prede�ned procedure rcl open node, which by default causes a new

neighborhood to be entered by following all outgoing arcs of the current outarc type. The

routine is typically replaced by users to perform actions speci�c to a particular application

domain, or speci�c to a node type. More sophisticated web traversals are possible using the

widget shown in Figure 3.9.

In general, neighborhood traversal involves selecting which arc direction to follow (in,

out, or any), which in arctypes to follow, which out arctypes to follow, the depth of the

traversal, whether or not to include the selected set in the new neighborhood, whether or not

to �lter all arcs not in the union of the inarcset and outarcset when the new neighborhood

is entered, and which command (if any) to perform upon neighborhood entry. The depth

parameter is used to guide how far the new neighborhood should be expanded (the arc

path length). By default it is 1, indicating the new neighborhood is only one arc away

from the old. A setting of -1 indicates `in�nite' path length (i.e., expand the neighborhood

to include as much of the knowledge base as possible, constrained by the current arc type

settings). The neighborhood entry command is typically used to perform an initial layout

CHAPTER 3. THE PHSE 61

Figure 3.10: Connectivity analysis of a neighborhood

of the artifacts in the graphical window displaying the neighborhood.

Analysis

The type of analysis performed on the artifacts in the knowledge base can be domain-

independent or domain-dependent. The PHSE provides basic statistics on the number of

artifacts in a neighborhood. It also provides integrated widgets for displaying hypertext

connectivity using text, a spreadsheet (Oleo [Joh94]), and graphically using bar charts

(through BLT [How94]). These calculations are performed using the current inarcset and

outarcset values. An example of their use on the neighborhood of Figure 3.5 is shown

in Figure 3.10. The basic operations provided by the PHSE for interrogating artifacts

and neighborhoods permit end users to specialize these general connectivity measures to

speci�c domains. For example, in the program understanding domain they may be used to

measure subsystem partitioning [MC91]. Users may also choose to codify their own metrics

completely in RCL. Examples of this will be shown in the next chapter.

CHAPTER 3. THE PHSE 62

Artifact Icon representation

Rigi V

Web

Strand

Audio annotation

Picture annotation

Textual annotation

Table 3.1: Sample icons

Presentation

Information presentation is concerned with visual and spatial aspects of neighborhood and

artifact display, such as size, color, icon representations, �ltering mechanisms, and graph

layout. The PHSE makes use of the experience gained in using Rigi IV: both visual and

spatial components (as discussed in Section 2.2.2.3) can serve as organizational axes for

information presentation. It provides extensible operations and user interface tools to in-

vestigate both aspects. Some of the icons provided by the PHSE used to represent often-used

attributes are shown in Table 3.1. The user may change the color of the icons, replace, or

augment this set with any other ones they desire.

For example, the layout of the graphical representation of a subject system can greatly

aid in its understanding. Aesthetically pleasing graph layouts are sometimes di�cult to

construct, either by hand or through an automatic algorithm. However, what is \pleasing"'

is subjective. The PHSE allows the user to manually arrange the positioning of neighbor-

hood artifacts in a window.11 They may also choose to use an external algorithm to aid

11Since the same artifact can exist in more than one visible neighborhood, there is an option for treating

the iconic representation of each artifact as distinct, so that when one icon is repositioned in a neighborhood,

all other icons representing the same artifact in other neighborhoods are not repositioned as well.

CHAPTER 3. THE PHSE 63

Figure 3.11: Menu customization widget

with the layout. The neighborhood shown in Figure 3.5 shows the artifacts connected to the

central node by structural arcs with a path length of at most two. This neighborhood was

entered by using the web traversal widget, with the settings as shown in Figure 3.9. The

layout used in the window is a spring layout produced by exporting the graph representing

the neighborhood to an o�ine layout package (GraphEd) [FR90]. Part of the script used

to interface with this package is shown in Appendix C.

Filtering has been used to remove all but structural arcs in the view of the neighborhood.

Such �ltering is often used to reduce visual complexity. A �lter widget is available to

selectively hide arcs or nodes of a particular type, and to display artifacts in di�erent ways

(for example, nodes with or without labels). Also shown in Figure 3.5 is an overlayed Voronoi

diagram [PS85]. This diagram layer was produced by exporting the same neighborhood to a

layout server, but in a format accepted by Tess. The Voronoi diagram has the nice property

of partitioning the neighborhood into regions, each of which encloses an area the points of

which are closest to the site in their center.12

3.4.3.4 Miscellaneous operations

There are a variety of miscellaneous operations provided in the Rigi V prototype. An

accelerator toolbar is available for often-performed functions, including web editing, web

12We are not proposing the use of computational geometry for HSU (although this might be an interesting

research area); rather, we are illustrating the versatility of the PHSE's information presentation facilities.

CHAPTER 3. THE PHSE 64

Figure 3.12: Widget customization

traversal, and strand navigation. The toolbar is shown as a series of smaller icons under the

menu in Figure 3.3. Limited help is provided through a series of canned demonstrations.13

There are also several customization and environment options parameters that are settable

by the user.

There are several status variables used by the PHSE, such as the inarcset and outarcset

discussed previously. These (and other) variables are accessed through the `Defaults' widget.

For customizing the user interface, two prototype widgets are provided. The �rst, shown

in Figure 3.11, permits the interactive alteration of the menu items. The second, shown

in Figure 3.12, displays the current widget hierarchy using the hierQuery package [Ric94].

This tool can also be used to change the Tk-settable parameters of widgets, such as fonts,

colors, and appearance. Of course, other suitable tools could also be used to customize the

interface, such as the XF interface builder [Del93].

13Made possible through the RCL automated interface.

CHAPTER 3. THE PHSE 65

3.4.3.5 Remarks

Since the PHSE supports general typed webs, some of the functionality provided by its

toolset is complex. For example, the operations involving splicing can be complicated,

especially the `delete and splice' combination. However, the typical use of these core routines

is to build more domain-dependent editing operations. Thus, the end-user need not always

work with such low-level routines (unless they wish to do so).

For example, by using splicing, hierarchies may be created or altered based on selected

set members, inarcsets, and outarcsets. These hierarchies can be used to form layered sub-

systems in the program understanding domain (as described in Section 4.4.4.3). Moreover,

in many cases the inarcset and outarcset will be the same, reducing the cognitive complexity

of these operations.

3.5 Summary

This chapter described the architecture, model, and implementation of the PHSE, a meta

reverse engineering framework.

The architecture of the PHSE directly addresses the requirements of a domain-retargetable

reverse engineering environment. Its strati�ed services provide the backbone upon which

extensions can be built. Control integration is achieved through the kernel's routing and

invocation mechanisms. Data integration is achieved through the use of a common repre-

sentation of the data at the conceptual, data, and physical levels. Presentation integration

is achieved through the tailorable user interface.

The toolset provided with the current implementation of the PHSE is rich, but by no

means complete. The current set is simply meant to illustrate its potential. To illustrate

the use of the PHSE, the next chapter discusses retargeting it to two speci�c application

domains: online documentation and program understanding.

Chapter 4

Retargeting the PHSE

\You have to have a degree in computer science to write programs. We all know
that. Right?"

| Brian Kernighan, [Ker94].

4.1 Introduction

The chapter illustrates the use of the PHSE. The steps required to retarget the current im-

plementation are described. Two application domains are explored: online documentation,

and program understanding. These domains where chosen because of their importance;

reasons behind this decision are given.

Retargeting the PHSE involves three main steps: specializing the conceptual model, ex-

tending the core functionality, and personalizing the user interface. The di�erence between

environment generation and environment instantiation is explained. The instantiation pro-

cess of the PHSE prototype is described.

The �rst application domain to which the PHSE is retargeted is online documentation.

The problem of existing linear documentation and its conversion to hypertext is described.

The use of the PHSE to address this problem is illustrated.

66

CHAPTER 4. RETARGETING THE PHSE 67

PHSE

Program

Understanding

Other

Domains

Online

Documentation

Figure 4.1: Retargeting the PHSE

The second application domain explored is program understanding. The huge body of

existing software systems presents an enormous challenge to current software development.

Examples of how the PHSE can be applied to the problem of redocumenting the structure

of existing legacy systems are provided.

4.2 Instantiation

Retargeting the PHSE for a speci�c application domain essentially involves instantiating the

meta reverse engineering environment framework. This process produces other, more spe-

cialized, environments. However, unlike other meta environments, such as Gandalf [HN86]

and MetaView [STM88], the PHSE does not generate a new environment. Instead, itmorphs

itself into a new environment dynamically, as illustrated in Figure 4.1. Upon invocation,

user-speci�ed RCL scripts are loaded by the environment. These scripts tailor the toolset

and user interface. Since the RCL scripting language is interpreted, this process can take

place while the PHSE is being used, permitting dynamic domain retargeting.

Beyond the standard X resources �le Rigiedit, environment variables are used to point

CHAPTER 4. RETARGETING THE PHSE 68

to �les that contain the appropriate code to instantiate the PHSE. The core functions are

extended by sourcing �les represented by the environment variables RIGIRCL and RIGIURCL.

The former speci�es the name of the root RCL �le the editor loads (system-de�ned scripts).

The latter speci�es user-de�ned extensions to the core functionality (user-de�ned scripts).

In a similar manner, the user interface is personalized through the variables RIGISTY and

RIGIUSTY, which represent system-de�ned and user-de�ned extensions to the user interface

functions, respectively. These extensions can be domain-independent and re
ect simple

user preferences, or they can be domain-dependent and alter the \personality" of the editor

to a speci�c application domain. A third �le may be speci�ed on the command line when

invoking rigiedit. In this way, system defaults, then user preferences, then session preferences

are loaded|in that order.

4.3 Online documentation

\Large documents are the most suitable for online viewing. They can be searched
in ways not possible in their printed form by making the underlying structure
of the document accessible."

| Ann Rockley, Putting Large Documents Online [Roc93].

This section illustrates the use of the PHSE in creating, representing, structuring, analyzing,

and understanding online documentation. The problem of moving existing linear text-based

documentation online is discussed. Document hyperstructure is explored. An example of

retargeting the PHSE to support LATEX documents is given.

Hypertext systems that only support authoring are limited in their usefulness because

they o�er little aid in moving the huge body of existing documentation online. Reverse

engineering can be used to extract artifacts and relationships from linear documentation

and automatically convert it to structured hypertext. During the translation process, the

structure inherent in the text document can be captured and mapped into its hypertext

equivalent.

CHAPTER 4. RETARGETING THE PHSE 69

As the size of a hypertext increases, navigational di�culties may counteract the bene�ts

of online documentation. We concentrate on the HSU aspects of the problem and describe

the need for structuring mechanisms beyond simple referential links. Personalized informa-

tion structures [TWMS93], multiple virtual documents over the same hypertext, are then

introduced as the logical successor to structured hypertext.

The PHSE's capabilities enable the user to construct personalized information struc-

tures. Their creation and use is illustrated by example. The PHSE is retargeted to support

documents written using the LATEX text processing language.

4.3.1 Background

The large body of existing textual information presents a serious challenge to the successful

introduction of online and multimedia systems into the workplace. What is needed is a way

to smoothly integrate traditional text-based legacy documentation with hypertext. Systems

that only support hypertext authoring are limited in their usefulness in this regard; they

provide little aid in moving documentation online.

During the data gathering phase of moving linear documentation into a hypertext sys-

tem, it is not su�cient to simply place the original document into a hypertext database;

the document's inherent structure should be extracted and represented in its hypertextual

counterpart. In particular, it is important to distinguish between structural and referen-

tial links; both are needed to model the literary paradigm. Structural links are especially

important when the information space is large: they facilitate navigation, tailoring, and

information retrieval by imposing structure on large documents.

Once documents have been moved online, hypertext systems should support a level of

customization at least equivalent to paper-based documentation systems. Before online

documentation, people personalized their printed text by writing in the margins, under-

lining phrases, and by putting \dog ears" on pages that were of interest to them. On-

line documents o�er improved navigation through non-linear search, pattern-matching, and

electronic \bookmarks." While such bookmarks shorten navigation time for subsequent

CHAPTER 4. RETARGETING THE PHSE 70

searches, they are essentially one-dimensional: they lack the ability to structure the docu-

ment as the user would like.

The hypertext's structure should be malleable and user-customizable. Many users would

prefer a hierarchical information structure, but containing only the information pertinent

to their particular needs. Others may prefer a non-hierarchical structure suiting their own

tastes and navigational abilities. Users should be able to select related pieces of informa-

tion from a large online hypertext, and organize this information into a virtual document.

Because of such personal preferences for document structure, it is unlikely that any single

choice made by the writer will suit all readers. Ultimately, it is the reader who decides what

is the best document architecture|not the writer.

4.3.2 The problem

Unfortunately, most techniques for converting linear documentation into hypertext have

limited capabilities. Hypertext o�ers an improvement over traditional linear documentation

by permitting navigation through the information web via links. However, for very large

online documents, the system should permit the structuring of the hypertext in ways that

support more intuitive navigation and information retrieval. Three areas of importance

related to this goal are feature extraction, structuring mechanisms, and multiple views.

One of the most important relationships in document structure is that of inclusion.

It is created by the nesting of section levels in the document. Composite nodes may be

used to represent document sections, giving rise to a cluster hierarchy in which leaf nodes

contain spans1 and internal nodes represent document sections. Since composite nodes may

be nested to an arbitrary depth, they are well-suited to represent the classical hierarchical

organization of documents. Because hierarchies supply structural information not available

in a
at semantic network, it is important to capture this relationship [SWF87]. A hierarchy

is often the optimal form for expository texts, making structured hypertext even more

important in conveying information to the reader. Hierarchical organization of information

1We use the term \span" [Col87] to refer to arbitrary textual units.

CHAPTER 4. RETARGETING THE PHSE 71

is central to reading and writing; it is an ordering concept that is familiar yet powerful. In

addition, documents structured hierarchically can provide numerous visual bene�ts to users

[CCA89], something that is very important in a graphical hypertext environment.

One way of representing document hyperstructure is with a semantic network. The

main disadvantage of using a simple (
at) semantic network to represent hypertext is that

very little structure is imposed. It is useful to explore the analogy between the evolution of

structured programming and the development of hypertext [vD87, FS89, Ber91]. Referential

links are analogous to goto statements in programming languages. Just as a multitude of

goto's renders a program incomprehensible, a multitude of links in a hypertext system

renders the document equally incomprehensible. Early programs were riddled with goto's,

until structured programming reduced the need for them; hypertext systems need a similar

structuring facility.

Presenting online documents from various viewpoints is deemed essential for an inter-

active document retrieval system [DeR89]. For example, a typesetter may be interested in

a document's physical appearance, while an editor may be more concerned with its con-

tents [Gar87]. Printed text has an inherently linear structure, but it is not without other

structuring mechanisms, such as aggregation due to section level nesting, and referential

relations between spans. Hence, textual documents have (at least) a double structure: one

de�ned by inter-span relations, and one induced by the nesting of sections. In fact, they

have other structural dimensions as well; when converting text to hypertext, it is important

to capture and distinguish among them.

4.3.3 The approach

Conversion from text2 to hypertext is a viable alternative to manual hypertext composition

[RT87]. In fact, when working with a large document base it becomes the only realistic

2It should be noted that while we are mainly concerned with the conversion of documents tagged with

descriptive markup, the techniques discussed in this section will also work for unadorned text. However, by

making use of existing markup describing document structure the resultant hypertext will better approximate

the original text. Examples of markup for indicating relations among spans include footnotes, reference

CHAPTER 4. RETARGETING THE PHSE 72

choice for initial hypertext population. One of the goals in the conversion process is to

maintain the literary paradigm inherent in the source document. This implies the hypertext

must have an architecture beyond simple nodes and arcs, and relations in the source text

must be properly mapped into hypertext links. In other words, the product of the conversion

process must be structured hypertext, as described above.

Structured hypertext is an improvement over regular hypertext; document hierarchy and

hypertext links provide two organizational axes for the abstraction of structure. However,

this can be improved upon. One of the original goals of hypertext was to allow readers

to impose their own structure on the information. A third axis may be realized through

multiple, virtual arrangements of the �rst two. These three axes form the basis for person-

alized information structures. By exploiting the programmable features of the PHSE, these

structures may be constructed, analyzed, and presented in various ways, all under control

of the user.

There are three structural features of linear documentation that must be extracted to

produce structured hypertext. As illustrated in Figure 4.2, they are:

(1) Sequential ordering: The ordering between sections imposes a sequential structure

which represents reading threads. In hypertext terms, this structure may be thought

of as implicit links between sections which the user follows when browsing a document

in a linear fashion. It is important to capture these discourse clues so as to re
ect

the original ordering among spans which the text's author intended [Cha87]. Section

sequencing may be modeled as a partial order and represented as a sequential link in

the hypertext.

(2) Referential relations: References from one section of the document to another, such

as \See Section 2.3 for more information," represent important information to readers.

Other examples of such static references are citations, footnotes, and page and section

sections, quotations, citations, glossaries, indices, and tables of contents. The conversion process should

capture these relations and represent them as live hypertext links. Naturally, the user should be able to

create links external to the document's original structure (for example, for annotational purposes).

CHAPTER 4. RETARGETING THE PHSE 73

Indicated by shading of section levels.

Sequential:

Link legend:

Referential

Structural:

Figure 4.2: Document hyperstructure

references. In hypertext terms, such references should be captured and translated into

referential links. Note that such relations may be made explicit in the document if

it was written using descriptive markup. Relations between spans may be modeled

as explicit references and represented as a referential link in the hypertext. These

relations may be specialized. For example, a citation link may represent a special

instance of a referential relation in which the label represents a bibliographical entry.

(3) Hierarchical sectioning: Documents have a natural hierarchy created by section lev-

els. It is important to accurately re
ect this hierarchy in hypertext. Otherwise, the

result of conversion is an unstructured collection of spans rather than the desired

structured hypertext. This structure may be represented as a layered graph, where

each layer represents a nesting level in the document. The hierarchical structure is

based upon a set of inclusion relations between sections and may be represented using

structural links in the hypertext.

CHAPTER 4. RETARGETING THE PHSE 74

One of the advantages of structured hypertext is the use of a hierarchy as a structuring

mechanism. Such a hierarchy can be used to address a single concept; a (
at) semantic

network has no such central theme. However, the structure of the hierarchy is �xed by the

author. Moreover, it can only address a single theme at a time. Hence, the logical successor

to such a single-viewed static mechanism is to allow multiple views of the same information,

and to allow multiple hierarchies. With personalized information structures, the user is able

to create their own view of the large underlying document, and to structure the pieces of

information related to a task as a mini-document. In this way, the user creates multiple

views of the document, each view pertaining to a particular task. Since the document

structure created is virtual, each user is using the same underlying information.

The personalization of hypertext can also improve information search and retrieval.

Users often fail to �nd pertinent information during online searches because they describe

the items they are searching for in terms di�erent than that stored in the system [RGL87],

or because they become disoriented while navigating [M�ul89]. By structuring the hypertext

the way they wish, the representation and the mental model of a concept can be much

closer. Searches become content-based conceptual searches with a much higher chance of

success. It has been reported that long-time users of paper-based documentation can �nd

information faster and more e�ciently than in hypertext systems because of the ability of

the paper to be customized, such as by writing in the margin, underlining parts of the text,

or leaving bookmarks [FB91]. Personalized information structures o�er a superset of the

same capabilities for hypertext-based documentation.

To summarize, text may be automatically converted to hypertext and represented using

a semantic network. Structuring this network in a hierarchical manner reduces disorien-

tation and increases usability for large hyperdocuments. The conversion process captures

three of the most important structural features of the literary paradigm. However, the

resultant hypertext is still static and two-dimensional. Personalized information structures

o�er an improvement over structured hypertext by lifting the restrictions imposed by such

an author-oriented environment. While other systems do exist for accessing existing docu-

mentation in a static hypertext form, they do not fully address authoring new information

CHAPTER 4. RETARGETING THE PHSE 75

structures built upon the originals. Personalized information structures bridge the two do-

mains of authors and end-users. The next section describes how the creation of personalized

information structures from existing text is accomplished using the PHSE.

4.3.4 An illustrative example

Personalized information structures can be created from linearly organized online documents

by retargeting the PHSE to support online information. The retargeting consists of three

steps: organizing knowledge by specifying a domain model, gathering data via structural

feature extraction, and navigating, analyzing, and presenting information by extending the

editor. This section illustrates the process using the LATEX source to a draft version of this

dissertation. LATEX was chosen as the text markup language since LATEX documents are in

plentiful supply, and thus the approach has immediate broad application.

4.3.4.1 Knowledge organization

The �rst step in the creation of personalized information structures begins with the creation

a conceptual model representing the LATEX application domain. Appendix B contains the

Telos description of the LATEX conceptual model used. The schema for this model is shown

in Figure 4.3. The model does not describe all of LATEX, just those features needed for

illustration purposes. Nodes in the LATEX domain model represent document artifacts,

while links represent relations between these artifacts. The LATEX artifacts are represented

by their respective icons, as shown in Table 4.1.

4.3.4.2 Data gathering

The second step in the creation of personalized information structures is the automatic

transformation of an existing linear document into structured hypertext. A text parsing

system that extracts structure, relations, and actual text from LATEX source was imple-

mented. The intention is not to duplicate the LATEX parser in its entirety, but simply to

CHAPTER 4. RETARGETING THE PHSE 76

Artifact Icon representation

ndocument

npart

nchapter

nsection

nsubsection

nsubsubsection

npar

nbibliography

nbibitem

Table 4.1: LATEX artifacts and their icons

extract typesetting features of relevance to HSU of online documents. As such, the parser

extracts the following information from the source (as discussed in Section 4.3.3):3

(1) Sequential ordering: A sequential link implicitly exists between adjacent portions

of text in a linear document. This rather obvious observation is of great importance

because it implies an order among objects. For example, if Section 3 of a manual

contains four paragraphs, then it is expected that they occur in the order in which

they are parsed, and may be named Paragraph 3.1, 3.2, 3.3, and 3.4. The parser

outputs sequential links between these paragraphs, plus one from the node representing

Section 3 to the node representing Paragraph 3.1.

(2) Referential relations: In LATEX, references include citations of bibliographical entries

using ncite, labeling using nlabel and nbibitem, and explicit references (nref and

3The parser outputs this information as an RSF stream.

CHAPTER 4. RETARGETING THE PHSE 77

LatexObject

LatexNode

LatexCompositeNode

Document
Part
Chapter
Section
Subsection
Subsubsection
Bibliography

LatexAtomicNode
Par
Bibitem

LatexLink

Structural
Sequential
Referential
Citation

PHSEObject

SimpleClass

Figure 4.3: LATEX schema

npageref). Directed citation links are established between bibliographical citations

and entries, and directed referential links are established between each reference and

the label that is referenced.

(3) Hierarchical sectioning: In LATEX, structure is speci�ed both in absolute and rela-

tive terms. Absolute mechanisms include the use of keywords such as nchapter and

nsection. An absolute textual scope de�ned by a particular keyword remains in

existence until over-ridden by another keyword of equal or greater signi�cance. Rel-

ative structure is speci�ed using the \environment" constructs such as nbegin and

nend or nappendix. The low-level objects are mostly paragraphs, but also include

such constructs as �gures, tables, and items in lists. Paragraphs are usually recog-

nized without the explicit use of an absolute keyword. Instead, one or more blank

lines, and various LATEX commands, delimit them. The parser captures the structural

containment relation among nested sections through structural links.

Parsing the document creates a structured hypertext consisting of nodes and links rep-

resenting the document's structure. Each node has a name (extracted from the original

document, but changeable by the user), a unique ID, and an attribute �le that represents

CHAPTER 4. RETARGETING THE PHSE 78

the text attached to the node. The LATEX commands are retained with the rest of the text

to permit normal text processing of selected nodes, as described in the next section.

The knowledge base representing the draft version of this dissertation contains approx-

imately 6,500 lines of RSF. Three other documents were placed online using the PHSE: a

journal paper of approximately 40 pages [BMG+94], a Ph.D. dissertation [Whi93], and a

textbook on software engineering [HS94]. The three documents were chosen as illustrative

examples because they represent documents of di�erent sizes: the journal paper is roughly

40 pages, the dissertation 200 pages, and the textbook 400 pages. The journal paper is

represented in 2,190 lines of RSF, the Ph.D. dissertation 7,542 lines, and the software engi-

neering textbook 11,967 lines.

4.3.4.3 Information navigation, analysis, and presentation

Once the source document has been parsed and the knowledge base populated with textual

artifacts, the user has access to a structured hypertext version of the original text. The

third step in the creation of personalized information structures begins: the semi-automatic

navigation, analysis, and presentation of the structured hypertext produced in the previous

two steps.

Figure 4.4 contains various views of the example knowledge base. The window at the

top contains the PHSE control widget. The window at left represents the neighborhood

of the `root' of the document. This neighborhood was entered by following the outgoing

structural links from the root, limiting the traversal to a depth of one. As one can see,

the artifacts \contained" in the document are represented by their respective icons, such

as chapters, paragraphs, and the bibliography. The arcs in the window are sequential links.

In the PHSE, an arc attached to the top of an icon represents an incoming link, while an

arc attached to the bottom of an icon represents an outgoing link. Since sequential links

represent the author's default reading thread, there exists a complete path through the

entire knowledge base that threads each artifact together. A portion of this thread can be

seen leaving the par1 node entering the par2, and so on.

CHAPTER 4. RETARGETING THE PHSE 79

Figure 4.4: Di�erent views of a LATEX document

The window on the right represents the neighborhood near the artifact representing

Chapter 2. A tree layout has been used to display the structural hierarchy below chap2,

shown as the left-most icon in the �gure. The depth setting was -1, so the neighborhood

contains all nodes reachable from chap2 following structural links. Although not discernable

from the black and white image, the nodes and arcs are colorcoded (the colors are user-

settable) to aid understanding.

Also shown at the bottom of the �gure is the qddb database engine. It may be used

as an RSF browser, to allow the user to interrogate the physical layer of the knowledge

base, in a manner similar to the schema browser for the conceptual model, and the PHSE

CHAPTER 4. RETARGETING THE PHSE 80

Figure 4.5: Writing style violation

editor's neighborhood windows for the data model. The user has requested a list of all

structural relations originating at the chap2 subject; the result of this query is shown in the

`Search Results' widget at bottom right. The `Object' column lists all artifacts that are the

destination of structural links emanating from the chap2 artifact. As expected, these are the

same artifacts shown in the right-most neighborhood window that are immediately to the

right of the chap2 icon.

To illustrate some aspects of online document analysis, consider the following. It is

common practice when writing to reference a bibliographical item the �rst time it is men-

tioned, and not again. If the same item in the bibliography is referenced more than once,

CHAPTER 4. RETARGETING THE PHSE 81

this might be construed as a \writing style violation." The PHSE can be used to detect

such rule violations. Figure 4.5 shows the PHSE being used on the example knowledge base

to identify such violations.

The bibliographical items that are referenced more than once are shown in the left-most

neighborhood window. They were located using the attribute-based selection widget shown

at the top of the �gure. Once located, the user has decided to construct two webs, Multiply

de�ned and Reference violators. The former's members are all those bibliographical entries

found to violate the writing style guidelines. The latter's members are the artifacts that

reference these bibliographical items. To facilitate later retrieval, both webs are made into

strands, as shown in the window to the right. The window in the middle of the �gure veri�es

the PHSE's �ndings; it shows the neighborhood of the bibliographical entry TWMS93 and

its incoming citation links: there are three of them (par4.3.5, par3.4.2.1, and par4.2.3).

The window at bottom left displays the Reference violators web. In LATEX mode, the

PHSE displays webs by showing the immediate (depth of one) neighborhood surrounding

the web artifact, connected by web links, and positioned out using an o�ine spring layout

algorithm. The RCL code used to specify the actions that should take place (in the LATEX

domain) when navigating by double-clicking on a node is shown in Appendix C. When

leaf nodes are \opened" following structural links, further navigation is not possible. This

occurs, for example, with paragraph artifacts. In this case, the attribute �le is accessed for

the artifact. If it exists, it points to the source �le represented by the paragraph icon; the

point editor is then invoked on this �le. An example of this is shown in the bottom-right of

the �gure. The source text for the par4.2.3 artifact is displayed, and the string TWMS93 is

highlighted, again verifying that this artifact references the TWMS93 bibliographical entry.

There are many other ways to manipulate the information in the knowledge base. Just

visible in the �gure is a `Project text' widget. It accesses the same �le attribute as above,

but instead of invoking an editor on the text (actually on each selected artifact), it is

projected into a temporary space. When the mouse moves over each frame in the widget,

the corresponding artifact is highlighted and the text's color changes. Although not shown,

CHAPTER 4. RETARGETING THE PHSE 82

the user can also choose to create a PostScript rendering of the text contained in selected

nodes. In this way, hardcopy of virtual documents may be produced.

There are measures available to help guide the user in the creation of alternate structures.

For example, Botafogo et al. have published hypertext global readability metrics that

attempt to quantify the complexity of the hyperstructure by measuring its compactness

(Cp) and stratum (St) [BRS92]. Basically, the compactness measure re
ects the density

or connectivity of the hyperstructure (with 0 indicating completely disconnected and 1

indicated a complete graph), and the stratum indicates how much of a linear ordering there

is in the hypertext. Naturally, these measure will di�er depending on which link types are

used in their computation. The RCL code that implements these two measures is shown in

Appendix C. However, in all cases, these measures only depend on structural information.

The results can be strengthened if the analysis is extended to include textual and stylistic

dimensions as well [RBS94].

4.3.5 Summary

This section illustrated the use of the PHSE by retargeting it to the online documentation

domain. A conceptual model for LATEX, a text markup language, was given. Knowledge

bases were created from three di�erent linear documents. A variety of navigation, analysis,

and presentation techniques were used to illustrate the PHSE's capabilities.

Document hyperstructure and the conversion of linear text into personalized informa-

tion structures was discussed. The original text document is automatically converted into

structured hypertext through a process which captures essential structural features of the

original document. These features model the literary paradigm of section nesting and span

relations and are identi�ed based on keyword sets and the document's physical structure.

The PHSE's capabilities are then used to construct personalized information structures

based on the single structured hyperdocument.

The natural evolution of document structure, from linear text to hypertext to structured

hypertext to personalized information structures, was presented. The latter allows the

CHAPTER 4. RETARGETING THE PHSE 83

user to select their own level of detail for di�erent parts of the document. The structure

becomes dynamic, user-de�nable, and is not as restrictive as a single hierarchy. Personalized

information structures allow the user to be in control of how a document is structured,

presented, and used|not just the author.

4.4 Program understanding

\Programmers have become part historian, part detective, and part clairvoyant."

| T.A. Corbi, [Cor89].

This section illustrates the use of the PHSE in understanding software systems. The problem

of redocumenting the design of legacy software systems is discussed. Some of the de�ciencies

in traditional approaches to the problem are outlined. An example of retargeting the PHSE

to address these de�ciencies is given.

4.4.1 Background

Design may be di�cult, but reconstructing and e�ectively (re)documenting the design of

existing software systems is even more di�cult [Opd92]. Recognizing abstractions in real-

world systems is as crucial as designing adequate abstractions for new ones. This is es-

pecially true for legacy software systems written 10{25 years ago, which are often in poor

condition because of prolonged, sometimes dramatic (even traumatic) maintenance. Such

systems are prevalent, problematic, and persistent: the new systems of today are the legacy

systems of tomorrow.

Legacy systems are found in wide-ranging applications such as avionics, banking systems,

health information systems, telephone switches, and many commercial software products.

Banks must update their systems regularly to implement new or changed business rules

and tax laws. Health information systems must adapt to rapidly changing technology and

CHAPTER 4. RETARGETING THE PHSE 84

increased demands. Software vendors are often committed to supporting their products (for

example, database management systems) inde�nitely, regardless of age.

These systems are also inherently di�cult to understand (and hence, to maintain) due

in part to their size, the lack of high-quality documentation, and their evolution history.

Evolving over many years, legacy systems embody substantial corporate knowledge and

cannot be replaced without reliving their entire maintenance history. Thus, managing

long-term software evolution is critical, especially considering the economic value of these

systems.

It is widely accepted that a signi�cant portion of software evolution work is devoted

to program understanding [Sta84]. Documentation has traditionally served an important

role in this regard. There are, however, signi�cant di�erences in documentation needs for

software systems of vastly di�erent scales (1,000 lines versus 1,000,000 lines). In the million-

lines-of-code range, tools are needed to help read programs; text (code) by itself is not very

helpful. By \read" one does not mean interpreting each line of source code like a compiler.

Rather, tools should help us \read" the high-level design inherent in the architecture, to

gain an understanding of the gestalt of the entire system [You94].

The importance of high-quality documentation in program understanding is widely rec-

ognized [HB88]. Without it, the only source of reliable information is the source code itself

[FM88]. While architectural rediscovery may not be a problem for a single developer,4 or

even for a small team (while they are together), it is a problem for long-term large-system

evolution. Software engineers and technical managers base many of their project-related

decisions on their understanding of the architecture of the software systems for which they

are responsible. While they rely on original design documents, maintenance histories, and

experienced project members or gurus (if they are available), internal documentation is of-

ten their primary source of information. Hence, the most obvious way to support program

understanding is to produce and maintain adequate documentation [Sam90].

4Even this point could be debated. If the program is su�ciently large or complex, a programmer may

have trouble understanding code written just months ago. Consequently, his or her mental model of the

system's structure becomes fuzzy at best.

CHAPTER 4. RETARGETING THE PHSE 85

4.4.2 The problem

Unfortunately, most software documentation that exists for these systems is in-the-small,

since it typically describes the program at the algorithm and data structure level. For large

legacy systems, an understanding of the structural aspects of the system's architecture is

more important than any single algorithmic component. The system-level documentation

that does survive for legacy software systems was probably written during the software's

initial design; rarely does it accurately re
ect the current implementation. As the software

evolves, the design documentation is left untouched while the implementation drifts farther

and farther away from the original designer's intent.

Even if the documentation is created and maintained, it provides just a single perspec-

tive: that of its author. Although each person may have di�erent objectives, everyone will

see the same thing: inline and block commentary with the source code, and original design

documents and maintenance logs.5 Finally, the documentation available is often scattered

throughout the system and on di�erent media. Hence, traditional approaches to program

documentation when applied to legacy software systems su�er from at least three major

aws. The documentation produced is in-the-small, usually out-of-date, and provides a

single perspective.

Without reliable, up-to-date, and applicable documentation, the only other source of

objective information is the program source code. It is left to maintenance personnel to

explore the low-level source code and piece together disparate information to form high-

level structural models. Manually creating just one such architectural document is always

arduous; creating the necessary documents that describe the architecture from multiple

points of view is often impossible. Yet it is exactly this sort of in-the-large documentation

that is needed to expose the structure of large software systems.

The use of textual representations is still the predominant form of programming; the

use of visual programming languages for programming-in-the-large is relatively new [Pen92].

While a program is logically a hierarchical structure, the program source is physically
at.

5Assuming these documents exist.

CHAPTER 4. RETARGETING THE PHSE 86

Compilers are adept at reconstructing the syntactic hierarchy; humans have the much more

di�cult task of reconstructing the logical hierarchy. This
at textual representation of

programs is a hindrance to program understanding.

For documentation purposes, one is often forced to convert diagrams of system structure

to a textual form for computer processing.6 The textual representation then becomes the

primary one and the diagrams frequently become obsolete and ignored. Modern systems

make it possible for such diagrams to become an integral part of the systems they represent.

4.4.3 The approach

Legacy software systems are too large and ill-structured to be solved by in-the-small doc-

umentation techniques. Understanding such systems involves uncovering the system-level

structure. Software structure is the collection of artifacts used by software engineers when

forming mental models of software systems. These artifacts include software components

such as procedures, modules, and interfaces; dependencies among components such as client-

supplier, inheritance, and control-
ow; and attributes such as component type, interface

size, and interconnection strength. A software system's hyperstructure is the organization

and interaction of these artifacts [Oss87]. This level of abstraction is called the software

architecture level [PW92].

Classical architecture has concepts that are desirable for
exible software architecture,

including multiple views and architectural styles. For example, a building architect would

provide one representation of the building to the carpenter, perhaps another to the plumber,

and yet another to the buyer. For software, we presently do with just one view: the

implementation. This view is like a building with no outer skin, and all the details exposed;

it makes understanding of the overall architecture very di�cult.

One computer-aided technique of reconstructing structural models to aid program un-

derstanding is reverse engineering. This increased understanding can improve subsequent

6For example, module interconnection languages such as NuMIL [CS90] are often used to represent module

structure and interactions.

CHAPTER 4. RETARGETING THE PHSE 87

development, ease maintenance and re-engineering, and aid project management. Using re-

verse engineering to reconstruct the architectural aspects of software may be termed struc-

tural redocumentation [WTMS95]. As a result, the overall hyperstructure of the subject

system can be derived and some of its architectural design information can be recaptured.

In addition, structural redocumentation does not involve physically restructuring the code

(although this might be a desirable outcome).

Parnas coined the term \design through documentation" [PCW85]. Structural redocu-

mentation makes the documentation a \live" representation of the source code, not separate

text. It avoids the problem stated in [KP74]: \The best documentation for a computer pro-

gram is a clean structure. : : : The only reliable documentation of a computer program is

the code itself. The reason is simple { whenever there are multiple representations of a

program, the chance for discrepancy exists." If the documentation is the structure, and

vice versa, no discrepancy exists.

A virtual architecture imposes a logical structure on a physical system. Limiting mod-

ularization to those supported by �le systems and programming languages is not su�-

cient to support the multiple representations desired for structural redocumentation. Since

prolonged maintenance tends to degrade software structure [Jon94], it is sometimes ad-

vantageous to disregard the existing modularization based on the source code's physical

structure. Instead, virtual modularizations impose logical groupings on user-de�ned arti-

facts, using clustering criteria deemed appropriate for enhancing the understanding of the

system [Sih94]. Virtual strati�cation divides the modularizations into layered subsystems.

It is through multiple, virtual modularizations and strati�cations that one can represent

software hyperstructure.

It is important in program understanding to construct program representations that

involve concepts from the application domain. Often, they will not be directly represented

in the code, and may only be known informally by the maintainer [HP92]. Virtual subsys-

tems can be used to represent such implicit mappings. They can be utilized to understand

and describe existing software systems for risk analysis and project management purposes.

CHAPTER 4. RETARGETING THE PHSE 88

For example, management personnel can use these structures to support some of the com-

plex decisions they face, such as resource allocation, personnel placement, impact analysis,

system comprehension, and information recovery.

4.4.4 An illustrative example

To illustrate the use of the PHSE for program understanding, the source code to SQL/DS

will be used as a reference system.7 SQL/DS (Structured Query Language/Data System)

is a large relational database management system that has evolved since 1976. It was based

on a research prototype and has undergone numerous revisions since its �rst release in

1982. Originally written in PL/I to run on VM, SQL/DS is now over 3,000,000 lines of

PL/AS code and runs on VM and VSE. PL/AS is a proprietary IBM systems programming

language that is PL/I-like and allows embedded System/370 assembler. Because PL/AS is

a proprietary language, commercial o�-the-shelf analysis tools are unsuitable. Simultaneous

support of SQL/DS for multiple releases on multiple operating systems requires multi-path

code maintenance, increasing the di�culty for its maintainers.

SQL/DS consists of about 1,300 compilation units, roughly split into three large systems

(and several smaller ones). Because of its complex evolution and large size, no individual

alone can comprehend the entire program. Developers are forced to specialize in a particular

component, even though the various components interact. Existing program documentation

is also a problem: there is too much to maintain and to keep current with the source code,

too much to read and digest, and not enough one can trust. SQL/DS is a typical legacy

software system: successful, mature, and supporting a large customer base while adapting

to new environments and growing in functionality.

It is unlikely that maintainers will attempt to reverse engineer over three million lines

of code at once. Rather, selected subsets of the system will be focused on in turn. For this

example, a subsystem of SQL/DS, ARIX, will be used. By itself it is over one million lines

7A more detailed description of the analysis of SQL/DS may be found in [WTMS95].

CHAPTER 4. RETARGETING THE PHSE 89

Artifact Icon representation

system

subsystem

module

proc

data

struct

member

Table 4.2: PL/AS artifacts and their icons

of code. In particular, a sub-subsystem, ARIXI, will be used to illustrate some concepts,

since at roughly 380,000 lines it is slightly more manageable.

4.4.4.1 Knowledge organization

The �rst step in the creation of virtual subsystem strati�cations begins with the creation of

a conceptual model representing the PL/AS application domain. Appendix B contains the

Telos description of the PL/AS conceptual model used. The schema for this model is shown

in Figure 4.6. As was the case in Section 4.4.4.1 with LATEX, the model does not describe

all of PL/AS, just those features needed for illustration purposes. Nodes in the PL/AS

domain model represent artifacts, while links represent relations between these artifacts.

The PL/AS artifacts are represented by their respective icons, as shown in Table 4.2.

The module node represents a PL/AS module (i.e., a �le), the data node presents a

PL/AS scalar variable, and the struct node represents a PL/AS compound variable. The

call arc connects twomodule nodes and represents a CALL from the �rstmodule to the second.

The data arc connects a module node to a data node, and represents the accessing of the

CHAPTER 4. RETARGETING THE PHSE 90

PLASObject

PLASElement

PLASContainerElement
System
Subsystem
Module

Procedure

Variable
Scalar
Record

PLASRelation

Level
Call
Struct
Data
Member
Proc

PHSEObject

SimpleClass

Figure 4.6: PL/AS schema

scalar variable from within the module. The struct arc connects a module node to a struct

node, and represents the accessing of the compound variable (or one of its members) from

within the module. In addition to these nodes and arcs, the domain-independent system

and subsystem nodes are also used.

PL/AS is a third generation procedural imperative programming language. Its hyper-

structure is PL/I-like: each physical �le is considered a module with a single main entry

point identi�ed by the keyword PROCEDURE (abbreviated as PROC). Alternate entry points

into the module are identi�ed by the keyword ENTRY. Nested procedures are also supported.

A preprocessor is used to %INCLUDE data declarations, usually from system libraries. Other

than the builtin datatypes, there is no way of creating user-de�ned types. However, both

scalar and compound (array and record-like) variables may be de�ned, and are identi�ed

by the DECLARE keyword (abbreviated as DCL). Procedures calls are speci�ed using the CALL

keyword.

The domain model for PL/AS captures the required artifacts and relations of a PL/AS

program to support the goals of structural redocumentation and architectural understand-

ing. Because of this, the model captures only in-the-large information. Although in-the-

CHAPTER 4. RETARGETING THE PHSE 91

data �le-name variable-name

call �le-name proc-name

proc �le-name proc-name

struct �le-name struct-name

member struct-name member-name

Table 4.3: PL/AS relations

small information is needed for other tasks such as intra-procedural control
ow analysis,

the focus of the PHSE is on inter-procedural structure, hence only in-the-large information

is extracted. For example, \local" intra-module calls are not captured.

4.4.4.2 Data gathering

The second step in the creation of virtual subsystem strati�cations is the gathering of

PL/AS artifacts and relations from the subject system. As described in Section 1.4.3,

the parsing system rigireverse is composed of several subsystems, one for each supported

programming language (for example, creverse handles C). To add support for PL/AS (i.e.,

write a plasreverse subsystem) to extract the relations identi�ed in Section 4.4.4.1 would have

meant writing a parser for PL/AS;8 this option was deemed unacceptable because of the

di�culties in parsing PL/AS (it is context-sensitive). Instead, the integration mechanisms

of the PHSE was used to load an RSF knowledge base produced by another research group.

The RSF tuples were generated by colleagues at IBM's Centre for Advanced Studies

(where they had already built a PL/AS scanner and parser) using the Software Re�nery.

The result is roughly 43,000 lines of RSF in 321 �les for the ARIX subsystem. The relations

8In fact, a preliminary version of plasreverse was written. It used a combination of csh, awk, and sed

scripts to translate a PL/AS program into its skeletal representation in C, and feed the result into the

existing creverse subsystem. However, this technique was only able to accurately extract module CALL

dependencies from the source code.

CHAPTER 4. RETARGETING THE PHSE 92

captured in these RSF �les are shown in Table 4.3. In the table, data represents the use

of a scalar variable from the �le `�le-name', call represents the call from a procedure in

`�le-name' to the procedure `proc-name', proc represents a procedure or alternate entry

`proc-name' visible outside of `�le-name', struct represents the use of a compound variable

from the �le `�le-name', and member represents the use of member `member-name' of the

compound variable `struct-name' (the �le within which this use takes place is implicit).

Since these relations have calls originating from �les (modules) but terminating at pro-

cedures (which are part of a module, and may or may not be the main entry point), they are

\normalized" to �t into the chosen PL/AS domain model. This means an RSF tuple that

originally represented a call from a module to a procedure is replaced by a tuple representing

a call from the module to the procedure's parent module. Similarly, a tuple representing an

access of a member of a compound variable is replaced by a tuple representing an access of

the compound variable itself. No important information is lost during this normalization

procedure, and these �ner-grained relations may in fact be re-realized if the user so desires.

The RSF relations for the ARIX subsystem were normalized using a combination of csh

and RCL scripts. The normalization caused 368 ENTRY points to be subsumed. The relations

were also �ltered to remove duplicates. The result is three �les: call (356 nodes, 1,079

relations), data (2,680 nodes, 14,995 relations), and struct (1,062 nodes, 7,315 relations), for

a total of 4,098 nodes and 23,389 arcs in the unstructured knowledge base.

To illustrate the extraction and normalization process, Figure 4.7 shows (a portion of)

a PL/AS module. The un�ltered RSF relations extracted from this code fragment are

shown in the top-right box of the �gure, while the normalized RSF tuples are shown in

the bottom-right box. The tuple representing the access9 of the data member DOMFACLN

has been replaced by a tuple representing access of the compound variable DOM, of which

DOMFACLN is a part. Calls from other modules that access the ENTRY ARIXIFP1 would be

replaced by calls to the module ARIXIFP.

9The access of the member DOMFACLN is unquali�ed. PL/AS allows this type of construct when it is

unambiguous. A clearer version of the statement would have been DOM.DOMFACLN(1) = 8;.

CHAPTER 4. RETARGETING THE PHSE 93

ARIXFP: PROC(....);

DCL ALLDIGTS FIXED(15) CONSTANT(0160);
DCL COMTEMPS(COMTMSIZ) FIXED(15);
DCL 1 DOM(10),
 2 DOMFLDPT PTR,
 2 DOMFACLN FIXED(15),
 2 DOMFRQLN FIXED(15);

COMTMPPTR = ADDR(COMTEMPTS);

SELECT(PTREEP4);
 WHEN(ALLDIGTS, INTTYPE) PLEN=4;

CALL ARICWSF(...);
CALL ARIXEDB(...);

DOMFACLN(1) = 8;

IF RSIRSSRC ^= OK THEN DO;
 CALL ARIXECK(...);
 GO TO LFREE;
END;

GO TO ALLDONE; /* GO TO THE END OF ARIXIFP */

ARIXIFP1: ENTRY(...);

data ARIXIFP ALLDIGTS
struct ARIXIFP COMTEMPS
call ARIXIFP ARICWSF
call ARIXIFP ARIXECK
call ARIXIFP ARIXEDB
proc ARIXIFP ARIXIFP
proc ARIXIFP ARIXIFP1
member DOM DOMFACLN

data ARIXIFP ALLDIGTS
struct ARIFIXP COMTEMPS
struct ARIXIFP DOM
call ARIXIFP ARICWSF
call ARIXIFP ARIXECK
call ARIXIFP ARIXEDB

Extraction

N
o
rm

a
liza

tio
n

PL/AS RSF

Figure 4.7: PL/AS structural feature extraction and normalization

4.4.4.3 Information navigation, analysis, and presentation

The third step in the creation of virtual subsystem strati�cations is the semi-automatic

navigation, analysis, and presentation of the unstructured knowledge base produced in the

previous two steps.

Figure 4.8 contains two views of a portion of the SQL/DS source code in the knowl-

edge base. The window at the left contains a spring layout of two modules, ARIXIGK and

ARIXIUK. This view is meant to illustrate the data coupling that exists between these two

modules (and others). The two modules are the `knots' in the graph; the shared data be-

tween them is represented as the intertwined fronds. The window on the right shows a

Sugiyama layout [STT81] of the neighborhood of the ARIXIAF module, following call links.

Measurements are used during reverse engineering for a variety of purposes. Measures

CHAPTER 4. RETARGETING THE PHSE 94

Figure 4.8: Data coupling and call structures

such as coupling and cohesion can be used to guide subsystem decomposition. Once sub-

system structures have been constructed, graph-theoretic measures such as cyclomatic com-

plexity [McC76], graph quality [M�ul90], and structural complexity [Car92] may be used to

re�ne the subsystems' hierarchies. Scripts can be used to compute such measures. For ex-

ample, shown in the bottom-right of the �gure is a calculation of cyclomatic complexity of

the call structure of the ARIXIAF portion of the graph. In this way, one of the fundamental

operations in reverse engineering, analysis, is aided by giving the end user access to the

wide variety of software metrics and tools that implement them. The RCL implementation

of this metric is shown in Appendix C.

Subsystem decomposition is the process of iteratively reducing the complexity of the

subject system by clustering artifacts based on some selection criteria and composing the

selected artifacts into subsystems. In this way, a layered graph structure is constructed. At

CHAPTER 4. RETARGETING THE PHSE 95

Figure 4.9: Name-based subsystem decomposition

the highest level are subsystems representing major components of the subject system.

Using various measures as a guide, multiple co-existing hierarchical structures may be

constructed. The programmability aspect of the PHSE enables the user to experiment

with various decompositions more easily than if they were done manually. For example,

a long-term goal of reverse engineering might be actual physical re-modularization (or re-

engineering) of a system to minimize inter-module coupling and maximize intra-module

cohesion. The system should be able to compute such modularizations automatically, and

stop when a user-de�ned termination condition is met.

Several experiments were conducted on the decomposition of SQL/DS using various

techniques, such as the hierarchical packaging algorithm of Chu and Patel [CP92]. However,

most of them failed to provide a satisfactory result. One of the reasons for this is the

nature of the SQL/DS implementation. While it does have a large and complex control

structure, it is essentially a data-driven application. The architecture is based on many

global data structures manipulated by relatively few software modules. While the developer

looks at code that is over 90% control logic, the compiler sees over 90% as data structure

declarations, placed in shared %INCLUDE �les. For this reason, the automatic, control-

CHAPTER 4. RETARGETING THE PHSE 96

oriented decompositions codi�ed in RCL were of little help in aiding the understanding of

SQL/DS. However, this process does illustrate one of the bene�ts of the PHSE: it facilitates

the exploration and experimentation of alternate decompositions on large systems such as

SQL/DS that would be virtually impossible to perform manually.

Instead of relying exclusively on formal analysis, it was decided to decompose SQL/DS

according to a common decomposition among legacy software systems: naming conventions.

This type of decomposition is often useful when the maintainer is attempting to get an initial

understanding of the subject system, and when it is implemented using speci�c identi�er

naming rules. While this is perhaps one of the simplest decomposition strategies, it is also

one of the most intuitive. A script to decompose a program according to application-speci�c

naming conventions is shown in Appendix C. Logical subsystems are created through the

PHSE's web edit and splice routines. The result of running this script on part of the

multi-million-line PL/AS program is shown in Figure 4.9

4.4.5 Summary

This section illustrated the use of the PHSE by retargeting it to the program understanding

domain. A conceptual model for PL/AS, was given. Knowledge bases were created from

SQL/DS, a real-world application in the O(106) lines of code range. A variety of navigation,

analysis, and presentation techniques were used to illustrate the PHSE's capabilities.

Documentation has traditionally played a key role as an aid in program understanding.

However, most documentation is \in-the-small," describing the program at the algorithm

and data structure level. For large legacy software systems, one needs \in-the-large" docu-

mentation describing the high-level structural aspects of the software system's architecture

from multiple perspectives. One way of producing such structural documentation for exist-

ing software systems is using reverse engineering technologies.

This section commented on some de�ciencies in traditional documentation techniques

and described an approach to supporting program understanding through structural redoc-

umentation. The approach is made possible by retargeting the PHSE and extending its

CHAPTER 4. RETARGETING THE PHSE 97

capabilities to the program understanding domain.

4.5 Summary

This chapter illustrated the extensibility of the PHSE by retargeting it to two di�erent

application domains: online documentation and program understanding. Personalized in-

formation structures were presented as the logical successor to structured hypertext. Virtual

subsystem strati�cations were presented as one way of redocumenting the structural aspects

of legacy software systems.

The PHSE can be used to exploit the parallels between the dual problems of software

maintenance and understanding, and document maintenance and understanding [MG92].

It facilitates the automatic conversion of text to structured hypertext, and the automatic ex-

traction of program hyperstructure. Higher-level abstractions can then be semi-automatically

constructed on these information structures using the PHSE's extensible toolset.

The prototype implementation of the PHSE has been used in several other domains.

The BookMaster text markup language has been used to explore the structure of IBM

product documentation [ET94], and several programs written in both C and COBOL have

been used to explore the PHSE's program understanding capabilities. More experimental

use of the PHSE in new application domains is discussed in Section 5.4.

Chapter 5

Conclusions

\Given the solution, what's the problem?"

| T-shirt logo, Working Conference on Reverse Engineering [WC93].

5.1 Research summary

Reverse engineering is one computer-aided technique of aiding hyperstructure understand-

ing. As stated in Section 1.1, HSU depends on at least three factors: the users' cognitive

ability and preferences, the users' domain knowledge, and the reverse engineering environ-

ment's toolset functionality. However, most reverse engineering environments fail to ade-

quately address these factors because their static nature limits their domain applicability,

domain modeling, and domain-instance analysis capabilities.

This dissertation presented a new approach to reverse engineering that achieves domain

retargetability through the integration of reverse engineering, end-user programming, and

conceptual modeling technologies. Directly addressing the problems of increasing users'

cognitive abilities and domain knowledge is beyond the scope of this research. However, by

focusing on the extensibility of the toolset, the approach indirectly addresses these issues

by permitting the user to exploit their domain knowledge and enabling them to tackle HSU

98

CHAPTER 5. CONCLUSIONS 99

according to their own preferences. The three canonical operations of reverse engineering

have all been made end-user programmable.

The PHSE, a meta reverse engineering environment framework that supports the ap-

proach, was presented. The architecture provides an extensible basis upon which domain-

speci�c reverse engineering environments can be constructed. The PHSE provides a con-

ceptual model based on Telos, a data model based on semantic networks, and a physical

layer based on RSF. The prototype environment was retargeted to two application domains

to demonstrate the viability of the approach.

5.2 Contributions

The major contributions of this dissertation are a new approach to hyperstructure under-

standing based on the integration of reverse engineering technologies, end-user program-

ming, and conceptual modeling (described in Chapter 2); an architecture for a domain-

independent meta reverse engineering environment supporting the approach (described in

Chapter 3); and a demonstration of the applicability of the approach through a proof-of-

concept realization of such an environment (described in Chapter 4).

Three canonical reverse engineering activity categories were presented: data gathering,

knowledge organization, and information navigation, analysis and presentation. The ap-

proach is unique in its emphasis on the use of end-user programming for all three of these

activities. Control, data, and presentation integration are all under the control of the user.

The application domain model is speci�ed as an extension to a domain-independent con-

ceptual schema. The power of the system is found in the cooperative use of small command

scripts. The scripts give users the ability to extend the tools in their reverse engineer-

ing toolbox by de�ning, storing, and retrieving commonly-used operations. Suites of HSU

techniques may be gathered, created, and maintained in script libraries.

The PHSE is a fully programmable meta reverse engineering environment framework.

It provides superior capabilities than a general reverse engineering environment because it

CHAPTER 5. CONCLUSIONS 100

can be tailored to speci�c application domains. This tailoring includes how data is gathered

from the subject system, how knowledge about the system is modeled, and how information

regarding the system is processed.

The realization of the PHSE illustrated the use of the PHSE framework in two di�erent

application domains. The implementation was based on an existing environment for reverse

engineering. The integration of o�-the-shelf tools with instances of the PHSE showed how

users can extend its capabilities.

5.3 Results

The objectives of this research were three-fold. The �rst objective was to investigate the

use of end-user programming within the context of a reverse engineering environment for

HSU. Several major automation, customization, and integration bene�ts resulted from the

integration of end-user programming into a reverse engineering environment. While most

reverse engineering environments provide a limited toolset, our approach uses a scripting

language that enables users to write their own routines for these activities. Thus, our

programmable approach provides a smooth transition from semi-automatic to automatic

reverse engineering. In essence, the approach subsumes existing reverse engineering systems

by being able to simulate facets of each one.

The second objective was to design an architectural framework that supports the ap-

proach. The PHSE architecture, model, and implementation described in Chapter 2 meets

this objective. It provides a meta reverse engineering environment that is implementable,

retargetable, and usable. The use of a meta environment means that end users need not

reconstruct environments from scratch every time a new application domain is encountered.

They can leverage their expertise and previous experience and apply it to the new problem

through the use of the PHSE.

The third objective was to demonstrate the viability of the approach by retargeting the

prototype implementation to two di�erent application areas. The two areas chosen, online

CHAPTER 5. CONCLUSIONS 101

documentation and program understanding, were selected because of the large potential

impact they have on real-world problems. Chapter 4 illustrated the capabilities of the

PHSE in addressing some of the challenges presented by these two problem areas.

Over time, experienced users of the PHSE can create a repertoire of commonly used

reverse engineering techniques. Users can produce a library of useful reverse engineering

scripts by bundling groups of often used commands together into procedures. Such scripts

can assist in automating recurring tasks [Idl89]. More important, users can create libraries

of domain-dependent reverse engineering strategies. As their expertise in their application

domain grows, so will their library of scripts|and so will the applicability of the PHSE.

5.4 Future work

This dissertation has not attempted to address all facets of reverse engineering as applied to

HSU. Several interesting but unexplored areas of research were discovered. These include

extending the approach to include dynamic aspects of HSU; perform reverse engineering

on the reverse engineering scripts; provide intelligent agents to automatically customize the

PHSE during use; explore the use of reverse engineering technologies for non-traditional

users and applications; and further validate the approach through industrial-strength use.

The current approach is limited to static structural analysis and modeling. The addition

of dynamic information would extend the application area of the PHSE to include real-time,

distributed, and call-back programs [Won94]. The temporal aspect of Telos might be of use

in this regard.

As the library of scripts grows, it would be interesting to perform analysis on them. In

other words, use the scripts as data input to the reverse engineering process. One of the

goals of such analysis could be to garner an insight into the comprehension process of the

user.

Another use of analyzing the scripts would be to construct a model of how the user

interacts with the system, and have the system adjust itself accordingly. Although work

CHAPTER 5. CONCLUSIONS 102

on self-tailoring user interfaces has taken place (e.g., Garnet [Mye93]), the use of intelligent

agents (\softbots") [GK94] applied to HSU might prove bene�cial. An important �rst step

in this regard would be the integration of an interface builder into the PHSE implementation

that removed the need for RCL-based interfaces at all.

Reverse engineering has traditionally been used by software engineering professionals.

However, it might also be used by management personnel to aid in risk assessment and

risk control. When it comes to making informed project-related decisions, management

personnel require a high-level understanding of the entire software systems, and in-depth

information on selected components. Reverse engineering can provide some of this in-

formation. Other users involved in the project, including technical writers, testers, and

co-operating departments might also bene�t from this information. An investigation into

the use of reverse engineering by this audience|which is much larger than that of just

software engineers|might prove fruitful.

The approach could also be tried in non-traditional application domains. For example,

the world-wide web (WWW) project has attracted much interest. Most WWW browsers

lack a hyperstructure aspect to facilitate navigation. Their personalization capabilities are

also limited [VSW94]. The PHSE could be integrated into a WWW browser, or vice-versa,

to provide an alternate interface to the underlying information.

Another non-traditional application area is business-process reengineering (BPR). Graph-

ical representations of the elements and processes in a real-world business enterprise can be

very complex. The capabilities of the PHSE could be used to analyze and visualize BPR.

The current method of using the PHSE is to construct a domain model and then populate

the knowledge base according to this domain model. It would be interesting to investigate a

more exploratory domain-modeling approach. In this scenario, the gathered data is placed

in the knowledge base, but without placing too many restrictions on the domain model.

Analysis could then be performed to verify whether or not the constructed domain model

accurately re
ects the data gathered. This process could result in iterative re�nement of the

domain model. However, it may prove di�cult in cases where the application has multiple

CHAPTER 5. CONCLUSIONS 103

domains merged in its implementation. This problem is similar to that of delocalized plans

in concept recognition [LS86].

The PHSE approach to reverse engineering should be further evaluated in an industrial

setting. It is only through real-world use that the true bene�ts of the PHSE can be realized,

and the approach improved. Previous case studies using earlier versions of Rigi IV have

proven to be a useful mechanism for technology exchange; it is assumed that this would be

the case with Rigi V as well.

Towards this goal, a more ambitious reverse engineering environment for program un-

derstanding based in part on this work is currently under way [BMG+94]. Called RevEngE,

the environment incorporates a number of di�erent tools which communicate through a

software repository, is targeted to run in a distributed environment, and performs analysis

on large programs (on the order of several million lines of code). This new environment

involves three universities and IBM as an industrial research partner. McGill University

is extending the structural understanding capabilities of Rigi V to support syntactic, se-

mantic, functional, and behavioral analysis. The University of Toronto is building a more

exible repository for storing software artifacts, pattern matching rules, and software engi-

neering knowledge. The University of Victoria is extending Rigi V to serve as the central

component of the environment. This environment is being used to perform partial design

recovery of large legacy software systems in conjunction with the IBM Software Solutions

Toronto Laboratory Centre for Advanced Studies [MSW+94].

5.5 Concluding remarks

Completely automatic system understanding has been the goal of many researchers. We

feel that this goal is based on a false premise: that removing humans from the loop is a

step forward. A better goal is to exploit human cognitive abilities by making the human

the centre of the loop.

This work advances towards this goal by bridging the gap between the reverse engineer-

CHAPTER 5. CONCLUSIONS 104

ing toolset builder and toolset user. The philosophy is to delegate to the user decisions

regarding the applicability, e�ectiveness, and use of tools and techniques in a particular ap-

plication domain. It is not intended to be �nal word in reverse engineering; it is admittedly

a modest step|but hopefully one in the right direction.

Bibliography

[Abr74] J.-R. Abrial. Data semantics. In Klimbie and Ko�man, editors, Data Manage-

ment Systems. North-Holland, 1974.

[AHF93] Adarsh K. Arora, David W. Hurst, and James C. Ferrans. Building diverse
environments with PCTE workbench. In PCTE '93, 1993.

[Alb89] Antonio Albano. Conceptual languages: A comparison of ADAPLEX, Galileo,
and Taxis. In Joachim W. Schmidt and Constantino Thanos, editors, Founda-
tions of Knowledge Base Management, pages 395{409. Springer-Verlag, 1989.

[Arn90] R.S. Arnold. Tutorial on software reengineering. In CSM'90: Proceedings of the

1990 Conference on Software Maintenance, (San Diego, California; November
26-29, 1990). IEEE Computer Society Press (Order Number 2091), November
1990.

[Ash94] Helen Ashman. What is hypermedia? ACM SIGLINK Newsletter, 3(2):6{8,
September 1994.

[BCM+94] Alan W. Brown, David J. Carney, Edwin J. Morris, Dennis B. Smith, and
Paul F. Zarella. Principles of CASE Tool Integration. Oxford University Press,
1994.

[BDTTJ94] Paul Beynon-Davies, Douglas Tudhope, Carl Taylor, and Christopher Jones.
A semantic database approach to knowledge-based hypermedia systems. Infor-
mation and Software Technology, 36(6):323{329, 1994.

[Ber91] Mark Bernstein. Panel discussion on structure, navigation, and hypertext:
The status of the navigation problem. In Proceedings of Hypertext '91 (San
Antonio, Texas; December 15-18, 1991), pages 363{366, December 1991. ACM
Order Number 614910.

[BGMT89] G. Boudier, F. Gallo, R. Minot, and I. Thomas. An overview of PCTE and
PCTE+. ACM SIGSOFT Software Engineering Notes, 13(5):248{257, Febru-
ary 1989.

105

BIBLIOGRAPHY 106

[BH92] Erich Buss and John Henshaw. Experiences in program understanding. Tech-
nical Report TR-74.105, IBM Software Solutions Toronto Laboratory Centre
for Advanced Studies, July 1992.

[BHLT93] Donald Broady, Hasse Haitto, Peter Lidbaum, and Magnus Tobiasson.
Darc: Document archive controller. Technical Report TRITA-NA-P9306,
IPLab/NADA, Royal Institute of Technology (Sweden), March 1993.

[Big88] James Bigelow. Hypertext and CASE. IEEE Software, 5(2):23{27, March 1988.

[Big93] Ted J. Biggersta�. Directions in software development & maintenance. Uni-
versity of Victoria invited talk, December 9, 1993.

[BMG+94] E. Buss, R. De Mori, W. M. Gentleman, J. Henshaw, H. Johnson, K. Konto-
giannis, E. Merlo, H. A. M�uller, J. Mylopoulos, S. Paul, A. Prakash, M. Stanley,
S. R. Tilley, J. Troster, and K. Wong. Investigating reverse engineering tech-
nologies for the CAS program understanding project. IBM Systems Journal,
33(3):477{500, 1994.

[BMS84] Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors. On

Conceptual Modelling: Perspectives from Arti�cal Intelligence, Databases, and

Programming Languages. Springer-Verlag, 1984.

[BMW84] Alexander Borgida, John Mylopoulos, and Harry K. T. Wong. Generaliza-
tion/specialization as a basis for software speci�cation. In Michael L. Brodie,
John Mylopoulos, and Joachim W. Schmidt, editors, On Conceptual Mod-

elling: Perspectives from Arti�cial Intelligence, Databases, and Programming

Languages, pages 88{117. Springer-Verlag, 1984.

[Bor80] Sheldon A. Borkin. Data Models: A Semantic Approach for Database Systems.
The MIT Press, 1980.

[BRI] The BRIEF DOS-OS/2 user's guide. Part of the BRIEF software package.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18:543{554, 1983.

[Bro87] Frederick P. Brooks Jr. No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20(4):10{19, April 1987.

[Bro91] Patrick Brown. Integrated hypertext and program understanding tools. IBM

Systems Journal, 30(3):363{392, 1991.

[BRS92] Rodrigo A. Botafogo, Ehud Rivlin, and Ben Shneiderman. Structural analysis
of hypertexts: Identifying hierarchies and useful metrics. ACM Transactions

on Information Systems, 10(2):142{180, April 1992.

BIBLIOGRAPHY 107

[BS91] Rodrigo A. Botafogo and Ben Shneiderman. Identifying aggregates in hypertext
structures. In Proceedings of Hypertext '91 (San Antonio, Texas; December 15-
18, 1991), pages 63{74, December 1991. ACM Order Number 614910.

[Bus45] Vannevar Bush. As we may think. The Atlantic Monthly, 176:101{108, 1945.

[Cah92] Tony Cahil. Practical di�culties in developing tools for analysis of large ap-
plication systems. In 3rd Reverse Engineering Forum (REF '92), (Burlingon,
MA; September 15-17, 1992), September 1992.

[Car92] David N. Card. Designing software for producibility. Journal of Systems and

Software, 17(3):219{225, March 1992.

[CC90] Eliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13{17, January 1990.

[CCA89] Donald B. Crouch, Carolyn J. Crouch, and Glenn Andreas. The use of cluster
hierarchies in hypertext information retrieval. In Proceedings of Hypertext '89

(Pittsburgh, Pennsylvania; November 5-8, 1989), pages 225{237, November
1989. ACM Order Number 608891.

[CG88] Brad Campbell and Joseph M. Goodman. HAM: A general-purpose hypertext
abstract machine. Communications of the ACM, 31(7):856{861, July 1988.

[Cha87] Davida Charney. Comprehending non-linear text: The role of discourse cues
and reading strategies. In Proceedings of Hypertext '87 (The University of North
Carolina, Chapel Hill, North Carolina; November 13-15, 1987), pages 109{120,
November 1987.

[Che76] Peter Chen. The entity-relationship model: Towards a uni�ed view of data.
ACM Transactions on Database Systems, 1(1), 1976.

[CMR92] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and
querying software structures. In ICSE'14: Proceedings of the 14th International

Conference on Software Engineering, (Melbourne, Australia; May 11-15, 1992),
pages 138{156, May 1992.

[Cod79] E. F. Codd. Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4), December 1979.

[Col87] George H. Collier. Thoth-II: Hypertext with explicit semantics. In Proceed-

ings of Hypertext '87 (The University of North Carolina, Chapel Hill, North
Carolina; November 13-15, 1987), pages 269{289, November 1987.

[Con87] Je� Conklin. Hypertext: An introduction and survey. IEEE Computer,
20(9):17{41, September 1987.

[Cor89] T.A. Corbi. Program understanding: Challenge for the 1990's. IBM Systems

Journal, 28(2):294{306, 1989.

BIBLIOGRAPHY 108

[Cou85] Pierre-Jacques Courtois. On time and space decomposition of complex struc-
tures. Communications of the ACM, 28(6):590{603, June 1985.

[Cow90] Mike F. Cowlishaw. The REXX Language. Prentice-Hall, 2nd edition, 1990.

[CP92] William C. Chu and Sukesh Patel. Software restructuring by enforcing localiza-
tion and information hiding. In CSM'92: Proceedings of the 1992 Conference on

Software Maintenance, (Orlando, Florida; November 9-12, 1992), pages 165{
172. IEEE Computer Society Press (Order Number 2980), November 1992.

[Cro94] Charles Crowley. The point text editor for X. Department of Computer Science,
University of New Mexico, 1994.

[CS90] Song C. Choi and Walt Scacchi. Extracting and restructuring the design of
large systems. IEEE Software, 7(1):66{71, January 1990.

[CTL+91] Marco A. Casanova, Luiz Tucherman, Maria Julia D. Lima, Jose L. Rangel
Netto, Noemi Rodriguez, and Lui F. G. Soares. The nested context model
for hyperdocuments. In Proceedings of Hypertext '91 (San Antonio, Texas;
December 15-18, 1991), pages 193{201, December 1991. ACM Order Number
614910.

[Del93] Sven Delmas. XF: Design and implementation of a programming environment
for interactive construction of graphical user interfaces. Part of the XF distri-
bution kit, Technische Universit�at Berlin, 1993.

[DeR89] Steven J. DeRose. Expanding the notion of links. In Proceedings of Hy-

pertext '89 (Pittsburgh, Pennsylvania; November 5-8, 1989), pages 249{257,
November 1989. ACM Order Number 608891.

[DMR94] Jean-Marc Debaud, Bijith M. Moopen, and Spencer Rugaber. Domain analysis
and reverse engineering. In International Conference on Software Maintenance

(ICSM '94), (Victoria, BC; September 19-23, 1994), pages 326{335, September
1994.

[DS86] Norman Delisle and Mayer Schwartz. Neptune: A hypertext system for CAD
applications. Technical Report CR-85-50, Computer Research Laboratory, Tek-
tronix, January 24, 1986. Also in Proceedings of ACM SIGMOD '86, pp. 132-
143, May 1986.

[Eig93] Frank Ch. Eigler. GXF: A graph exchange format. Department of Computer
Science, University of Toronto, January 1993.

[EMM90] J.A. Ellis, M. Mata-Montero, and H.A. M�uller. Serial and parallel algorithms
for (k; 2)-partite graphs. In Proceedings of XVI Conferencia Latinoamericana

de Informatica, (Asunci�on, Paraguay; September 10-14, 1990), pages 31{52,
September 1990.

BIBLIOGRAPHY 109

[ET94] Graham Ewart and Marijana Tomic. Experiences using reverse engineering
techniques to analyse documentation. In Proceedings of the Third Workshop

on Program Comprehension (WPC '94), (Washington, DC; November 14-15,
1994), pages 54{61, November 1994.

[EV93] David Elder-Vaas. MVS systems programming. McGraw-Hill, Inc., 1993.

[FB91] Florence M. Fillion and Craig D. Boyle. Important issues in hypertext documen-
tation usability. In Proceedings of the 9th International Conference on Systems

Documentation (SIGDOC '91), (Chicago, Illinois; October 10-12, 1991), pages
59{66, October 1991.

[FHS+92] James C. Ferrans, David W. Hurst, Michael A. Sennett, Burton M. Covnot,
Wneguang Ji, Peter Kajka, and Wei Ouyang. HyperWeb: A framework for
hypermedia-based environments. In Proceedings of the Fifth ACM SIGSOFT

Symposium on Software Development Environments (SIGSOFT '92/5 SDE),

(Tyson's Corner, Virginia; December 9-11, 1992), pages 1{10, December 1992.
In ACM Software Engineering Notes, 17(5).

[Fin79] Nicholas V. Findler, editor. Associative Networks (Representation and Use of

Knowledge by Computers). Academic Press, 1979.

[FM88] Nigel T. Fletton and Malcolm Munro. Redocumenting software systems us-
ing hypertext technology. In Proceedings of the 1988 Conference on Software

Maintenance (CSM '88), (Phoenix, Arizona; October 24-27, 1988), pages 54{
59. IEEE Computer Society Press (Order Number 879), October 1988.

[FR90] T. Fruchtermann and E. Reingold. Graph drawing by force-directed place-
ment. Technical Report UIUC CDS-R-90-1609, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, 1990.

[FS89] Richard Furuta and P. David Stotts. Programmable browsing semantics in
trellis. In Proceedings of Hypertext '89 (Pittsburgh, Pennsylvania; November
5-8, 1989), pages 27{42, November 1989. ACM Order Number 608891.

[Gar87] Pankaj K. Garg. Abstraction mechanisms in hypertext. In Proceedings of

Hypertext '87 (The University of North Carolina, Chapel Hill, North Carolina;
November 13-15, 1987), pages 375{395, November 1987.

[Gil90] Jonathan Paul Gilbert. PolyView: An Object-Oriented Data Model for Support-

ing Multiple User Views. PhD thesis, Department of Information and Computer
Science, University of California at Irvine, 1990.

[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software agents. Communica-
tions of the ACM, 37(7):48{53, July 1994.

BIBLIOGRAPHY 110

[GMT86] F. Gallo, R. Minot, and M.I. Thomas. The object management system of
PCTE as a software engineering database management system. In Proceed-

ings of the Second ACM Symposium on Practical Software Development En-

vironments (SIGSOFT '86/SDE 2), (Palo Alto, CA; December 9-11, 1986),
December 1986. In ACM SIGPLAN Notices, 22(1), January 1987.

[Goo90] Danny Goodman. The Complete HyperCard 2.0 Handbook. Bantam Books, 3rd
edition, August 1990.

[GT94] Kaj Gr�onbaek and Randall H. Trigg. Hypermedia system design applying the
Dexter reference model. Communications of the ACM, 37(2):26{29, February
1994.

[Gui86] Guide: Hypertext for the Macintosh. OWL International, Inc., 1986. User
manual.

[Hal88] Frank G. Halasz. Re
ections on NoteCards: Seven issues for the next generation
of hypermedia systems. Communications of the ACM, 31(7):836{852, July 1988.

[Har94] Juris Hartmanis. Turing award lecture: On computational complexity and
the nature of computer science. Communications of the ACM, 37(10):37{43,
October 1994.

[HB88] Jane E. Hu�man and Cli�ord G. Burgess. Partially automated in-line docu-
mentation (PAID): Design and implementation of a software maintenance tool.
In Proceedings of the 1988 Conference on Software Maintenance (CSM '88),

(Phoenix, Arizona; October 24-27, 1988), pages 60{65. IEEE Computer Soci-
ety Press (Order Number 879), October 1988.

[Hen79] Gary G. Hendrix. Encoding knowledge in partitioned networks. In Nicholas V.
Findler, editor, Associative Networks (Representation and Use of Knowledge

by Computers), pages 51{92. Academic Press, 1979.

[HF94] Erich H. Herrin and Raphael A. Finkel. QDDB. University of Kentucky, 1994.

[Him93] Michael Himsolt. GraphEd: The design and implementation of a graph editor.
Part of the GraphEd distribution kit, Universit�at Passau, 1993.

[HKW91] Yoshinori Hara, Arthur M. Keller, and Gio Wiederhold. Implementing hyper-
text database relations through aggregations and exceptions. In Proceedings

of Hypertext '91 (San Antonio, Texas; December 15-18, 1991), pages 75{90,
December 1991. ACM Order Number 614910.

[HN86] A.N. Habermann and D.S. Notkin. Gandalf: Software development environ-
ments. IEEE Transactions on Software Engineering, SE-12(12):1117{1127, De-
cember 1986.

[How94] George Howlett. The BLT toolkit. A Tcl/Tk extension, 1994.

BIBLIOGRAPHY 111

[HP92] W.E. Howden and Suehee Pak. Problem domain, structural and logical abstrac-
tions in reverse engineering. In CSM'88: Proceedings of the 1988 Conference on

Software Maintenance, (Orlando, Florida; November 9-12, 1992), pages 214{
224. IEEE Computer Society Press (Order Number 879), November 1992.

[HS94] Daniel Ho�man and Paul Strooper. Software design and maintenance: A
document-driven approach. To be published, 1994.

[Hyp89] HyperTalk beginner's guide. Apple Computer, Inc., 1989.

[Idl89] E. Alan Idler. A visual scripting language. Master's thesis, University of Vic-
toria, 1989.

[Imp91] Lotus improv handbook, 1991.

[JMSV91] Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, and Yannis Vassil-
iou. DAIDA: An environment for evolving software systems. Technical Report
DKBS-TR-91-1, Department of Computer Science, University of Toronto, Oc-
tober 1991.

[Joh94] Ross Johnson. Oleo/tk. Department of Informantion Sciences and Engineering
University of Canberra, Australia, 1994.

[Jon94] Capers Jones. Geriatric care for legacy systems. Computer, 27(11):79, Novem-
ber 1994.

[Ker94] Brian W. Kernighan. The real-life seminar. University of Victoria invited talk,
October 13, 1994.

[Kle88] Raymond O. Klefstad. Maintaining a Uniform User Interface for an Ada Pro-

gramming Environment. PhD thesis, Department of Information and Computer
Science, University of California, Irvine, 1988.

[KLO+93] Rudolf K. Keller, Richard Lajoie, Marianne Ozkan, Fayez Saba, Xijin Shen,
Tao Tao, and Gregor v. Bochmann. The Macrotec toolset for CASE-based
business modeling. In Proceedings of the Sixth International Conference on

Computer-Aided Software Engineering (CASE '93), (Institute of Systems Sci-
ence, National University of Singapore, Singapore; July 19-23, 1993), pages
114{118, July 1993. IEEE Computer Society Press (Order Number 3480-02).

[KM81] Brian W. Kernighan and John R. Mashey. The UNIX programming environ-
ment. Computer, 14(4):25{34, April 1981.

[KMSB89] Manolis Koubarakis, John Mylopoulos, Martin Stanley, and Alex Borgida. Te-
los: Features and formalizations. Technical Report KRR-TR-89-4, Department
of Computer Science, University of Toronto, February 1989.

[Knu84] Donald Knuth. Literate programming. Computer Journal, 27(2):97{111, May
1984.

BIBLIOGRAPHY 112

[K�94] Bent Bruun Kristensen and Kasper �sterbye. Conceptual modeling and pro-
gramming languages. ACM SIGPLAN Notices, 29(9), September 1994.

[Kos80] S.M. Kosslyn. Image and Mind. Harvard University Press, 1980.

[Kow79] R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[KP74] B.W. Kernighan and P.J. Plauger. The Elements of Programming Style.
McGraw-Hill, 1974.

[KS86] Henry F. Korth and Abraham Silberschatz. Database System Concepts.
McGraw-Hill Book Company, 1986.

[KSW93] N. Kiesel, A. Sch�urr, and B. Westfechtel. GRAS: A graph-oriented database
system for (software) engineering applications. In CASE '93: The Sixth In-

ternational Conference on Computer-Aided Software Engineering, (Institute
of Systems Science, National University of Singapore, Singapore; July 19-23,
1993), pages 272{286, July 1993. IEEE Computer Society Press (Order Number
3480-02).

[Lan90] Thomas G. Lane. Studying software architecture through design spaces and
rules. Technical Report CMU/SEI-90-TR-18, Software Engineering Institute;
Carnegie-Mellon University, November 1990.

[Lic86] Zavdi L. Lichtman. Generation and consistency checking of design and program
structures. IEEE Transactions on Software Engineering, SE-12(1):172{181,
January 1986.

[LS86] Stanley Letovsky and Elliot Soloway. Delocalized plans and program compre-
hension. IEEE Software, pages 41{48, May 1986.

[Lyo94] Kelly A. Lyons. Cluster Busting in Anchored Graph Drawing. PhD thesis,
Queens University, 1994.

[Man93] Spiros Mancoridis. A multi-dimensional taxonomy of software development
environments. Working paper, Department of Computer Science, University of
Toronto, May 1993.

[Mau92] Hermann Maurer. Why hypermedia systems are important. Technical Report
331, Institutes for Information Processing (IIG), Graz University of Technology,
Austria, February 1992.

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Represent-
ing knowledge about information systems. ACM Transactions on Information

Systems, 8(4):325{362, October 1990.

[MC91] Hausi A. M�uller and Brian D. Corrie. Measuring the quality of subsystem
structures. Technical Report DCS-193-IR, University of Victoria, November
1991.

BIBLIOGRAPHY 113

[McC76] Thomas McCabe. A complexity measure. IEEE Transactions on Software

Engineering, SE-7(4):308{320, September 1976.

[McL94] Michael J. McLennan. [incr tcl]. AT&T Bell Laboratories, Allentown, PA,
1994.

[MG92] Sky Matthews and Carl Grove. Applying object-oriented concepts to docu-
mentation. In Proceedings of the 10th International Conference on Systems

Documentation (SIGDOC '92), (Ottawa, Ontario; October 13-16, 1992), pages
265{271, October 1992. ACM Order Number 613920.

[MK88] H.A. M�uller and K. Klashinsky. Rigi | A system for programming-in-the-large.
In Proceedings of the 10th International Conference on Software Engineering

(ICSE '10), (Ra�es City, Singapore; April 11-15, 1988), pages 80{86, April
1988. IEEE Computer Society Press (Order Number 849).

[ML84] John Mylopoulos and Hector J. Levesque. An overview of knowledge representa-
tion. In Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, editors,
On Conceptual Modelling: Perspectives from Arti�cal Intelligence, Databases,

and Programming Languages, pages 3{17. Springer-Verlag, 1984.

[MOTU93] Hausi A. M�uller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A
reverse engineering approach to subsystem structure identi�cation. Journal of
Software Maintenance: Research and Practice, 5(4):181{204, December 1993.

[MS88] G. Marchionini and B. Shneiderman. Finding facts and browsing knowledge in
hypertext systems. Computer, 21:70{80, 1988.

[MSW+94] John Mylopoulos, Martin Stanley, Kenny Wong, Morris Bernstein, Renato De
Mori, Graham Ewart, Kostas Kontogiannis amd Ettore Merlo, Hausi M�uller,
Scott Tilley, and Marijana Tomic. Towards an integrated toolset for program
understanding. Proceedings of the 1994 IBM CAS Conference (CASCON '94),

(Toronto, ON; October 31 - November 3, 1994), pages 19{31, November 1994.

[MTO+92] H.A. M�uller, S.R. Tilley, M.A. Orgun, B.D. Corrie, and N.H. Madhavji. A
reverse engineering environment based on spatial and visual software intercon-
nection models. In Proceedings of the Fifth ACM SIGSOFT Symposium on

Software Development Environments (SIGSOFT '92), (Tyson's Corner, Vir-
ginia; December 9-11, 1992), pages 88{98, December 1992. In ACM Software

Engineering Notes, 17(5).

[MTW93] Hausi A. M�uller, Scott R. Tilley, and Kenny Wong. Understanding soft-
ware systems using reverse engineering technology: Perspectives from the Rigi
project. In Proceedings of the 1993 IBM/NRC CAS Conference (CASCON '93),

(Toronto, Ontario; October 25-28, 1993), pages 217{226, October 1993.

BIBLIOGRAPHY 114

[MU90] Hausi A. M�uller and J.S. Uhl. Composing subsystem structures using (k; 2)-
partite graphs. In Proceedings of the 1990 Conference on Software Mainte-

nance (CSM '90), (San Diego, California; November 26-29, 1990), pages 12{19,
November 1990. IEEE Computer Society Press (Order Number 2091).

[M�ul86] Hausi A. M�uller. Rigi { A Model for Software System Construction, Integra-

tion, and Evolution based on Module Interface Speci�cations. PhD thesis, Rice
University, August 1986.

[M�ul89] Hausi A. M�uller. (k; 2)-partite graphs as a structural basis for the construc-
tion of hypermedia applications. Technical Report DCS-119-IR, University of
Victoria, June 1989.

[M�ul90] Hausi A. M�uller. Verifying software quality criteria using an interactive graph
editor. In Proceedings of the Eighth Annual Paci�c Northwest Software Quality

Conference (PNSQC '90), (Portland, Oregon; October 29-31, 1990), pages 228{
241, October 1990. ACM Order Number 613920.

[Mye75] G.L. Myers. Reliable Software Through Composite Design. Petrocelli/Charter,
1975.

[Mye93] Brad A. Myers. The second Garnet compendium: Collected papers 1990-1992.
Technical Report CMU-CS-93-108, School of Computer Science, Carnegie Mel-
lon University, February 1993.

[Myl91] John Mylopoulos. Conceptual modelling and Telos. Technical Report DKBS-
TR-91-3, Department of Computer Science, University of Toronto, November
1991.

[Nar93] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User

Computing. MIT Press, 1993.

[Nie90a] Jacob Nielsen. Hypertext & Hypermedia. Academic Press, 1990.

[Nie90b] Jacob Nielson. The art of navigating through hypertext. Communications of

the ACM, 33(3):296{310, March 1990.

[Nin89] Jim Q. Ning. A Knowledge-Based Approach to Automatic Program Analysis.
PhD thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1989.

[NM93] P. Newcomb and L. Markosian. Automating the modularization of large
cobol programs: Application of an enabling technology for reengineering. In
WCRE '93: Proceedings of the 1993 Working Conference on Reverse Engineer-

ing, (Baltimore, Maryland; May 21-23, 1993), pages 222{230. IEEE Computer
Society Press (Order Number 3780-02), May 1993.

BIBLIOGRAPHY 115

[NN91] Jocelyne Nanard and Marc Nanard. Using structured types to incorporate
knowledge in hypertext. In Proceedings of Hypertext '91 (San Antonio, Texas;
December 15-18, 1991), pages 329{343, December 1991. ACM Order Number
614910.

[Nor91] Kurt Normark. A hyperstructure programming environment for CLOS. In
Technology of Object-Oriented Languages and Systems (TOOLS4), pages 127{
140. Prentice Hall, 1991.

[OMT92] Mehmet A. Orgun, Hausi A. M�uller, and Scott R. Tilley. Discovering and
evaluating subsystem structures. Technical Report DCS-194-IR, University of
Victoria, April 1992.

[ON93] Kasper Osterbye and Kurt Normark. The vision and the work in the HyperPro
project. Technical Report R-93-2012, Aalborg University, April 1993.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[OS93] Michael R. Olsem and Chris Sittenauer. Reengineering technology report (Vol-
ume I). Technical report, Software Technology Support Center, August 1993.

[Oss84] Harold L. Ossher. A New Program Structuring Mechanism Based on Layered

Graphs. PhD thesis, Stanford University, 1984.

[Oss87] Harold L. Ossher. A mechanism for specifying the structure of large, layered
systems. In Bruce D. Shriver and Peter Wegner, editors, Research Directions

in Object-Oriented Programming, pages 219{252. MIT Press, 1987.

[Ost93] Kasper Osterbye. Literate Smalltalk programming using hypertext. Technical
Report R-93-2025, Aalborg University, August 1993.

[OT94] A.B. O'Hare and E.W. Troan. RE-Analyzer: From source code to structured
analysis. IBM Systems Journal, 33(1), 1994.

[Ous94] John K. Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley, 1994.

[Par79] David L. Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, SE-5(2):128{137, March 1979.

[Pau92] Santanu Paul. SCRUPLE: A reengineer's tool for source code search. In CAS-

CON'92: Proceedings of the 1992 IBM CAS Conference, (Toronto, Ontario;
November 9-12, 1992), pages 329{345, November, 1992.

[PCW85] David L. Parnas, Paul C. Clements, and David M. Weiss. The modular struc-
ture of complex systems. IEEE Transactions on Software Engineering, SE-
11(3):259{266, March 1985.

BIBLIOGRAPHY 116

[Pen92] David A. Penny. The Software Landscape: A Visual Formalism for

Programming-in-the-Large. PhD thesis, The University of Toronto, November
1992.

[PS85] Franco P. Preparata and Michal I. Shamos. Computational Geometry. Springer-
Verlag, 1985.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40{52,
October 1992.

[RBS94] Ehud Rivlin, Rodrigo A. Botafogo, and Ben Shneiderman. Navigating in hy-
perspace: Designing a structure-based toolbox. Communications of the ACM,
37(2):87{96, February 1994.

[RGL87] Joel R. Remde, Loius M. Gomez, and Thomas K. Landauer. Superbook: An
automatic tool for information exploration: Hypertext? In Proceedings of

Hypertext '87 (The University of North Carolina, Chapel Hill, North Carolina;
November 13-15, 1987), pages 175{188, November 1987.

[Ric94] David Richardson. Interactively con�guring Tk-based applications. In Proceed-

ings of Tcl/Tk '94 Workshop (New Orleans, LA; June 23-25, 1994), 1994.

[Roc93] Ann Rockley. Putting large documents online. In Proceedings of the 11th

Annual International Conference on Systems Documentation (SIGDOC '93),

(Waterloo, Ontario; October 5-8, 1993), pages 273{281. ACM (Order Number
6139330), October 1993.

[Roh87] J. Rohrich. Graph attribution with multiple attribute grammars. ACM SIG-

PLAN Notices, 22(11):55{70, November 1987.

[Rol94] Walter A. Rolling. A preliminary annotated bibliography on domain engineer-
ing. ACM SIGSOFT Software Engineering Notes, 19(3):82{84, July 1994.

[Ros94] Rossetti. The Rome graph layout server. University of Rome, 1994.

[RT87] Darrell R. Raymond and Frank Wm. Tompa. Hypertext and the New Oxford
English Dictionary. In Proceedings of Hypertext '87 (The University of North
Carolina, Chapel Hill, North Carolina; November 13-15, 1987), pages 143{153,
November 1987.

[Sam90] Johannes Sametinger. A tool for the maintenance of C++ programs. In Proceed-
ings of the 1990 Conference on Software Maintenance (CSM '90), (San Diego,
California; November 26-29, 1990), pages 54{59. IEEE Computer Society Press
(Order Number 2091), November 1990.

[SG92] Mary Shaw and David Garlan. Experiences with a course on architectures for
software systems. Technical Report CMU-CS-92-176, Carnegie-Mellon Univer-
sity, 1992.

BIBLIOGRAPHY 117

[SGC79] Lenhart K. Schubert, Randolph G. Goebel, and Nicholas J. Cercone. The
structure and organization of a semantic net for comprehension and inference.
In Nicholas V. Findler, editor, Associative Networks (Representation and Use

of Knowledge by Computers), pages 121{175. Academic Press, 1979.

[Sha89] Mary Shaw. Larger scale systems require higher-level abstractions. ACM SIG-

SOFT Software Engineering Notes, 14(3):143{146, May 1989. Proceedings of
the Fifth International Workshop on Software Speci�cation and Design.

[Sih94] Paul Sihota. Identifying empirical structures in large software systems. Mas-
ter's thesis, Department of Computer Science, University of Victoria, November
1994.

[Sob91] Richard Sobiesiak. A hypertext authoring framework based on ceonceptual
modelling. Master's thesis, University of Toronto, 1991.

[Sof94] SmartPad user handbook, 1994. Softblox, Inc.

[Sow88] John F. Sowa. Conceptual Structures: Information Processing in Mind and

Machine. Addison-Wesley, 1988.

[SP94] Darren Spruce and Holger Pleiss. CTAXT { Combine Tcl/Tk with arbitrary X
toolkits. Technical report, European Synchrotron Radiation Facility, January
1994.

[Sta81] Richard M. Stallman. EMACS: The extensible, customizable, self-documenting
display editor. In Proceedings of the ACM SIGPLAN/SIGOA Symposium on

Text Manipulation, (Portland, Oregon; June, 1981), pages 147{156, Jne 1981.

[Sta84] Thomas A. Standish. An essay on software reuse. IEEE Transactions on

Software Engineering, SE-10(5):494{497, September 1984.

[STM88] Paul G. Sorenson, Jean-Paul Tremblay, and Andrew J. McAllister. The
MetaView system for many speci�cation environments. IEEE Software,
5(2):30{38, March 1988.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Transactions on Systems, Man, and Cybernetics,
11(4):109{125, 1981.

[SvdB93] Dick Schefstr�om and Ger van den Broek, editors. Tool Integration: Environ-

ments and Frameworks. John Wiley & Sons, 1993.

[SWF87] John B. Smith, Stephen F. Weiss, and Gordon J. Ferguson. A hypertext writ-
ing environment and its cognitive basis. In Proceedings of Hypertext '87 (The
University of North Carolina, Chapel Hill, North Carolina; November 13-15,
1987), pages 195{214, November 1987.

BIBLIOGRAPHY 118

[Taz90] Jane Morill Tazelaar. End-user programming: State of the art. BYTE, pages
208{254, August 1990.

[Til92] Scott R. Tilley. Management decision support through reverse engineering
technology. In Proceedings of the 1992 IBM CAS Conference (CASCON '92),

(Toronto, Ontario; November 9-11, 1992), pages 319{328, November, 1992.

[Til94] Scott R. Tilley. Domain-retargetable reverse engineering II: Personalized user
interfaces. In International Conference on Software Maintenance (ICSM '94),

(Victoria, BC; September 19-23, 1994), pages 336{342. IEEE Computer Society
Press (Order Number 6330-02), September 1994.

[TM93] Scott R. Tilley and Hausi A. M�uller. Using virtual subsystems in project man-
agement. In Proceedings of the Sixth International Conference on Computer-

Aided Software Engineering (CASE '93), (Institute of Systems Science, Na-
tional University of Singapore, Singapore; July 19-23, 1993), pages 144{153,
July 1993. IEEE Computer Society Press (Order Number 3480-02).

[TMO92] Scott R. Tilley, Hausi A. M�uller, and Mehmet A. Orgun. Documenting soft-
ware systems with views. In Proceedings of the 10th International Conference

on Systems Documentation (SIGDOC '92), (Ottawa, Ontario; October 13-16,
1992), pages 211{219. ACM (Order Number 613920), October 1992.

[Tra94] Will Tracz. Domain-speci�c software architecture (dssa) frequently asked ques-
tions (faq). ACM SIGSOFT Software Engineering Notes, 19(2):52{56, April
1994.

[TWMS93] Scott R. Tilley, Michael J. Whitney, Hausi A. M�uller, and Margaret-Anne D.
Storey. Personalized information structures. In Proceedings of the 11th An-

nual International Conference on Systems Documentation (SIGDOC '93), (Wa-
terloo, Ontario; October 5-8, 1993), pages 325{337. ACM (Order Number
6139330), October 1993.

[Ull80] Je�rey D. Ullman. Principles of Database Systems. Computer Science Press,
Inc., 1980.

[vD87] Andries van Dam. Hypertext '87 keynote address. In Proceedings of Hy-

pertext '87 (The University of North Carolina, Chapel Hill, North Carolina;
November 13-15, 1987), November 1987.

[vMV92] A. von Mayrhauser and A. M. Vans. An industrial experience with an in-
tegrated code comprehension model. Technical Report CS-92-205, Colorado
State University, 1992.

[vMV93] A. von Mayrhauser and A. M. Vans. From code understanding needs to reverse
engineering tools capabilities. In CASE '93: The Sixth International Confer-

ence on Computer-Aided Software Engineering, (Institute of Systems Science,

BIBLIOGRAPHY 119

National University of Singapore, Singapore; July 19-23, 1993), pages 230{239,
July 1993. IEEE Computer Society Press (Order Number 3480-02).

[VSW94] Ronald J. Vetter, Chris Spell, and Charles Ward. Mosaic and the world-wide
web. Computer, pages 49{57, October 1994.

[Wal89] Janet H. Walker. Authoring tools for complex document sets. In Edward
Barrett, editor, The Society of Text: Hypertext, Hypermedia, and the Social

Construction of Information. The MIT Press, 1989.

[Was85] Kenneth H. Wasserman. Unifying Representation and Generalization: Under-

standing Hierarchically Structured Objects. PhD thesis, Columbia University,
1985.

[Was89] Anthony I. Wasserman. Tool integration in software engineering environments.
In G. Goos and J. Hartmanis, editors, Proceedings of the International Work-

shop on Environments, (Chinon, France; September 18-20, 1989), pages 137{
149. Springer-Verlag, 1989.

[WC93] Richard C. Waters and Elliot J. Chikofsky, editors. Proceedings of the 1993

Working Conference on Reverse Engineering (WCRE '93), (Baltimore, Mary-
land; May 21-23, 1993). IEEE Computer Society Press (Order Number 3780-
02), May 1993.

[WCM+94] Kenny Wong, Brian D. Corrie, Hausi A. M�uller, Margaret-Anne D. Storey,
Scott R. Tilley, and Michael Whitney. Rigi V user's manual, 1994. Part of the
Rigi distribution package.

[Whi93] Michael Whitney. Minterm Based Search Algorithms for Two-Level Minimiza-

tion of Discrete Functions. PhD thesis, Department of Computer Science, Uni-
versity of Victoria, 1993.

[Wol91] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Com-

puter. Addison-Wesley, 2nd edition, 1991.

[Won91] Kenny Wong. Techniques for optimizing Fortune's plane-sweep algorithm for
Voronoi diagrams. Master's thesis, Department of Computer Science, Univer-
sity of Victoria, April 1991.

[Won94] Kenny Wong. Understanding software architecture and behavior through inte-
grated structural and dynamic analysis, March 1994. Ph.D. dissertation pro-
posal.

[WTMS95] Kenny Wong, Scott R. Tilley, Hausi A. M�uller, and Margaret-Anne D. Storey.
Structural redocumentation: A case study. IEEE Software, 12(1):46{54, Jan-
uary 1995.

BIBLIOGRAPHY 120

[YHMD88] Nicole Yankelovich, Bernard J. Haan, Norman K. Meyrowitz, and Steven M.
Drucker. Intermedia: The concept and the construction of a seamless informa-
tion environment. Computer, 21(1):81{96, January 1988.

[You94] Ed Yourdon. Peopleware at Microsoft. Guerrilla Programmer, 1(12):3, Decem-
ber 1994.

[YTT88] Michael Young, Richard N. Taylor, and Dennis B. Troup. Software environ-
ment architectures and user interface facilities. IEEE Transactions on Software

Engineering, 14(6):697{708, June 1988.

[Zve94] Nicholas Zvegintzov, editor. Software Management Technology Reference

Guide. Software Management News Inc., 4.2 edition, 1994.

Appendix A

Selected implementation details

To support the goals outlined in Chapter 2 and achieve domain-retargetability using the

architecture described in Section 3.2, the Rigi IV environment (as described in Section 1.4.3)

was extended. This appendix describes retro�tting the PHSE architecture onto Rigi IV,

resulting in Rigi V [WCM+94]. Changes were required to all three main subsystems of Rigi

IV (the editor, the parser, the database), but the majority of the enhancements were in

rigiedit.

A.1 Architecture of Rigi IV

As shown in Figure A.1, the high-level architecture of Rigi IV is is composed of three

major subsystems: a parser (rigireverse), an editor (rigiedit), and a database (rigiserver).

The philosophy behind Rigi is a set of cooperating and communicating tools. The parsing

system extracts information from the source code and populates the database. The user

manipulates the database using the graph editor. The entire system is distributed and

multi-user, runs on several hardware platforms (Sun 3, Sun 4, and IBM RS/6000) and

provides user interfaces under three di�erent windowing systems (Motif, Open Look, and

SunView).

Based on a user-selectable option, rigireverse invokes a parsing subsystem speci�c to

121

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 122

creverse

cobolreverse

Motif

Open Look

Sunview

GRAS

Rigi

rigireverse rigiserver rigiedit

Figure A.1: The Rigi IV environment's main components

the application programming language. For example, for parsing C, rigireverse invokes

creverse to extract C program dependencies (it can also extract �le system information,

such as directory structure and #include �le dependencies, if desired). rigireverse and its

subprograms, such as creverse, communicate via UNIX pipes using a protocol called RTL

(Rigi Tuple Language). The user can choose to create an initial subsystem decomposition

based on the current physical structure of the source code, or to ignore this information

and generate a
at resource-
ow graph.

A.2 Changes to Rigi IV

The main component to be changed was rigiedit, the graph editor. Previously, it consisted

of two tightly-coupled subsystems: the user interface and the editor itself. All editing and

selection operations were intermingled with operations for manipulating the user interface,

such as window size, menu selection, and so forth. To make the editor domain-retargetable,

a three-phased extension to rigiedit took place. The �rst phase was to extend the editor's

functionality through the inclusion of a scripting language. The second phase was to make

the editor's user interface tailorable. The third phase was to provide a mechanism for the

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 123

user to specify a domain model when using the editor.

A.2.1 Phase I: Making the editor programmable

Phase I of the changes to rigiedit concentrated on making the editor programmable by

decoupling of the graph editor from the graphical user interface (GUI). A transparent

scripting layer was then introduced between the direct manipulation user interface (the

mouse-based GUI) and the graph editor. This made it possible to program editor operations

independently of graphical user interactions.

As discussed in Section 2.3, a scripting language ampli�es the power of the environment

by allowing end users to write scripts to extend the application's functionality. A scripting

language is extremely useful in a windowing environment; it just functions \behind the

scenes." Users who accept the default operations of the editor will be unaware of a scripting

language|but its power is available to those users who want to take advantage of it.

The scripting language provided in Rigi V, RCL, is based on Tcl. The philosophy

behind Tcl, and hence that of RCL, is that each event of any importance to the application

should be bound to a Tcl command: each keystroke, mouse motion, button press, and menu

entry. When the event occurs, it is �rst mapped to its Tcl command, and then executed by

passing the command to the Tcl interpreter, which calls the appropriate call-back routine

that implements the Tcl command. Complex sets of operations can be described with a

script and then associated with a menu entry or accelerator key so that the compound

command can be easily invoked.

Tcl is application-independent and provides three di�erent interfaces: a textual interface

to users who issue Tcl commands, a procedural interface to the application in which it is

embedded, and an inter-application invocation mechanism for communicating among Tcl-

based tools. In the new rigiedit, the Tcl interpreter sits between the graphical user interface

and the graph editor, as shown in Figure A.2. For those who have used the Rigi environment

before, the creation of an intermediate layer and the use of Tcl is not visible; they continue

to manipulate the editor using the GUI alone, hence maintaining backwards compatability

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 124

rigiedit

UI Tcl editor

Motif / Tk

Motif / Xm

Open Look / XView

Navigation

Analysis

Presentation

Figure A.2: Extending rigiedit

with Rigi IV.

All atomic core procedures provided by the PHSE are pre�xed with rcl , such as

rcl node create. The composite procedures are pre�xed by the canonical activity they

support, such as data save telos. In essence, the RCL procedures provide a composable

library of Tcl routines that form the basis of a domain-speci�c HSU workbench.

A.2.2 Phase II: Making the user interface tailorable

Phase two of the changes to rigiedit involved providing the users with a personalizable user

interface. Besides using Tcl as a scripting language to enable users to program the editor's

actions, one may use Tcl in conjunction with the Tk toolkit to tailor the editor's graphical

user interface. Tk is an X11 toolkit that implements the Motif look-and-feel. It is similar

in functionality to the Xm toolkit (which was previously used for programming the Rigi

IV Motif interface), except that Tk may be programmed in Tcl rather than a lower-level

language such as C.

Rather than having to redo the entire user interface portion of rigiedit from scratch,

the existing editor architecture was incrementally augmented with Tk widgets. To do this,

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 125

XmXt //Xlib

Tk

Tcl CTAXT

rigiedit core

Direct

Manipulation

RCL

Scripts

rigiedit UI

Other Tcl-based

Applications

send rigiedit [command]

Figure A.3: New rigiedit architecture

the CTAXT [SP94] interface library was used. CTAXT enables Tk widgets to coexist with

Xm widgets in the same application. Without CTAXT, problems arise with allocation

of window manager signals and resources. A pictorial representation of the new rigiedit

architecture is shown in Figure A.3. All commands, whether they originate from the direct

manipulation graphical user interface or from RCL scripts, go through the same routing and

logging mechanism. It is expected that as the implementation evolves, the remaining user

interface widgets would be converted to Tk and the current requirement for Motif would

be removed, negating the need for CTAXT.

By using Tcl as an intermediary for all interface actions, users can write Tcl scripts to

recon�gure the interface. For example, they can rebind keystrokes, change mouse buttons, or

replace an existing operation with a more complex one speci�ed as a set of Tcl commands.

By using the Tk toolkit, one can recon�gure the appearance of the environment. All of

the system's interface components can be con�gured using Tcl commands. This makes it

possible for users to write Tcl programs to personalize the layout and appearance of the

environment as desired.

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 126

Relation Subject Class Object Class

attr Object name

attr Object id

attr Object type

attr Object anno

attr Node strand

attr Arc src

attr Arc dst

attr Node Table Handling

attr Node Conditionals

attr Node Reportwriter Calls

attr Node Input Output

attr Node Data Manipulation

Table A.1: Rigiattr for COBOL

A.2.3 Phase III: Incorporating a domain model

Phase three of the changes to rigiedit involved providing the users with the capability of

providing a domain model for their application. Because a fully implemented version of

Telos was not immediately available, Rigi V provides a surrogate mechanism. The domain

model is speci�ed in a set of �les, three of the most important of which are Riginode, Rigiarc,

and Rigiattr.

These three �les specify the nodes, arcs, and attributes in the domain, respectively.

An example of the Rigiattr �le for a COBOL domain is shown in Table A.1. Riginode is

a �le of tuples that declare node types and their iconic representation. The line through

the middle of the �gure separates domain-independent information (top) from domain-

dependent (bottom). The keyword any is a wildcard that matches any object class.

Rigiarc and Rigiattr are �les of triples that are essentially RSF meta-data. Both declare

APPENDIX A. SELECTED IMPLEMENTATION DETAILS 127

relations in the model, but the relations in Rigiarc will be visible as arcs connecting nodes

in the editor; the relations in Rigiattr are \hidden" as attributes of nodes or arcs. This

dual nature of relations, either visible or hidden, is extremely powerful. It means by simply

moving an entry from Rigiattr to Rigiarc one can see relations are �rst-class objects in

the PHSE editor. Attributes are not (by default) displayed using arcs; they are however

accessible using the attribute search and editing mechanisms provided.

A.3 Limitations

The current implementation has some limitations. It is a prototype constructed on top an

existing environment. This arrangement produced a program that is somewhat larger and

more complicated than had it been written completely from scratch. However, without the

existing environment the development e�ort would have been signi�cantly greater.

The largest knowledge base the Rigi V has been used on is the entire SQL/DS system.

This represents roughly 100,000 objects loaded into the editor. The graphical manipula-

tion of such a large and complex graph presents some performance issues that should be

addressed in the future. The generic graphics routines used are somewhat stretched beyond

their useful capabilities at this scale.

The integration of a true database server and knowledge base repository is needed when

such large data sets are used. It is also needed when the reverse engineering e�ort is

multi-person and/or multi-site. Part of the mandate of the RevEngE project discussed in

Section 5.4 is to meet this need.

Appendix B

Telos schemas

This appendix contains the Telos schemas used in the dissertation. Section B.1 contains the

Telos code for the PHSE schema. Section B.2 contains the Telos code for LATEX. Section B.3

contains the Telos code for PL/AS.

The schemas are given using Telos s-expressions. Informally, an s-expression consists of

a name, a class speci�er, a list of classi�cation (IN) clauses, a list of generalizarion (ISA)

clauses, and a list of attribute (WITH) clauses. The grammar is shown in Figure B.1.

128

APPENDIX B. TELOS SCHEMAS 129

s-expr := `(' name classi�cation IN-clause ISA-clause WITH-clause `)'

IN-clause := `(' class� `)'

ISA-clause := `(' class� `)'

WITH-clause := `(' attr-decl� `)'

attr-decl := `(' attr-category attribute `)'

attr-category := `(' attr-class� `)'

attribute := `(' (`(' label to`)')� `)'

attr-class := string

name := string

classi�cation := `MetaClass' j `SimpleClass' j `Token'

label := string

to := string

Figure B.1: Telos s-expression grammar

APPENDIX B. TELOS SCHEMAS 130

B.1 PHSE schema

{ Meta Classes }

(ObjectClass MetaClass
(MetaClass)
()
(((attribute)

((single Proposition)
(necessary Proposition)
(set Proposition)))))

(PHSEObjectClass MetaClass
()
(ObjectClass)
())

{ Simple Classes }

(PHSEObject SimpleClass
(SimpleClass PHSEObjectClass)
()
(((attribute necessary single)

((id Integer)))
((attribute)

((annotation Proposition)))))

(PHSEWeb SimpleClass
()
(PHSEObject)
(((attribute)

((member PHSEObject)))))

APPENDIX B. TELOS SCHEMAS 131

B.2 LATEX schema

(LatexObject SimpleClass
()
(PHSEObject)
())

{ Nodes }

(LatexNode SimpleClass
()
(LatexObject)
(((attribute single)

((file String)))
((attribute)

((sequential Sequential)))))

(LatexCompositeNode SimpleClass
()
(LatexNode)
(((attribute)

((structural Structural)))))

(LatexAtomicNode SimpleClass
()
(LatexNode)
(((attribute)

((referential Referential)
(citation Citation)))))

(Document SimpleClass
()
(LatexCompositeNode)
())

(Part SimpleClass
()
(LatexCompositeNode)
())

APPENDIX B. TELOS SCHEMAS 132

(Chapter SimpleClass
()
(LatexCompositeNode)
())

(Section SimpleClass
()
(LatexCompositeNode)
())

(Subsection SimpleClass
()
(LatexCompositeNode)
())

(Subsubsection SimpleClass
()
(LatexCompositeNode)
())

(Par SimpleClass
()
(LatexAtomicNode)
())

(Bibliography SimpleClass
()
(LatexCompositeNode)
())

(Bibitem SimpleClass
()
(LatexAtomicNode)
())

APPENDIX B. TELOS SCHEMAS 133

{ Links }

(LatexLink SimpleClass
()
(LatexObject)
(((attribute single)

((src LatexNode)
(dst LatexNode)))))

(Structural SimpleClass
()
(LatexLink)
(((attribute single)

((src LatexCompositeNode)))))

(Sequential SimpleClass
()
(LatexLink)
())

(Referential SimpleClass
()
(LatexLink)
(((attribute single)

((src LatexAtomicNode)))))

(Citation SimpleClass
()
(LatexLink)
(((attribute single)

((src LatexAtomicNode)
(dst Bibitem)))))

APPENDIX B. TELOS SCHEMAS 134

B.3 PL/AS schema

(PLASObject SimpleClass
()
(PHSEObject)
())

{ Elements }

(PLASElement SimpleClass
()
(PLASObject)
(((attribute single)

((file String)))))

(PLASContainerElement SimpleClass
()
(PLASElement)
(((attribute)

((level Level)))))

(System SimpleClass
()
(PLASContainerElement)
())

(Subsystem SimpleClass
()
(PLASContainerElement)
())

(Module SimpleClass
()
(PLASContainerElement)
(((attribute)

((call Call)
(struct Struct)
(data Data)
(proc Proc)))))

APPENDIX B. TELOS SCHEMAS 135

(Procedure SimpleClass
()
(PLASElement)
())

(Variable SimpleClass
()
(PLASElement)
())

(Scalar SimpleClass
()
(Variable)
())

(Record SimpleClass
()
(Variable)
(((attribute)

((member Member)))))

{ Relations }

(PLASRelation SimpleClass
()
(PLASObject)
(((attribute single)

((src PLASElement)
(dst PLASElement)))))

(Level SimpleClass
()
(PLASRelation)
(((attribute single)

((src PLASContainerElemement)))))

APPENDIX B. TELOS SCHEMAS 136

(Call SimpleClass
()
(PLASRelation)
(((attribute single)

((src Module)
(dst Module)))))

(Struct SimpleClass
()
(PLASRelation)
(((attribute single)

((src Module)
(dst Record)))))

(Data SimpleClass
()
(PLASRelation)
(((attribute single)

((src Module)
(dst Scalar)))))

(Member SimpleClass
()
(PLASRelation)
(((attribute single)

((src Record)
(dst Scalar)))))

(Proc SimpleClass
()
(PLASRelation)
(((attribute single)

((src Module)
(dst Procedure)))))

Appendix C

RCL examples

This appendix contains several examples of RCL code. Section C.1 contains a portion

of the RCL code to delete a web. Section C.2 contains the RCL glue code to connect

the PHSE to an o�ine graph layout server. Section C.3 contains the LATEX-speci�c RCL

code for opening nodes. Section C.4 contains examples of hypertext complexity metrics

of compactness and stratum. Section C.5 contains the RCL code to implement McCabe's

cyclomatic complexity metric. Section C.6 contains the RCL code to perform name-based

decompositions on SQL/DS.

137

APPENDIX C. RCL EXAMPLES 138

C.1 Web deletion

Delete the web...
foreach node $web {

if {$splice} {

Detach web from parents connected by $inarcset...
set parents {}
foreach arc [xget_arc_neighbors $node $inarcset in] {

set parent [rcl_get_arc_src $arc]
if {[lsearch [win_get_parents] $parent] != -1} {

ladd parents $parent
rcl_arc_delete $arc

}
}

Connect parents to web members via $inarcset...
foreach arc [xget_arc_neighbors $node $outarcset out] {

set member [rcl_get_arc_dst $arc]
foreach parent $parents {

foreach arctype $inarcset {
rcl_arc_create $parent $member $arctype

}
}

}

Delete outgoing $outarctype arcs IFF the node was not
part of any other $inarcset web...
if {![llength [xget_arc_neighbors $node $inarcset in]]} {

foreach arc [xget_arc_neighbors $node $outarcset out] {
rcl_arc_delete $arc

}
}

Delete web itself IFF it has no in arcs of any type...
if {[llength [xget_arc_neighbors $node any in]] == 0} {

rcl_node_delete $node
}

Without splicing, things are easy: just delete the node...
} else {

rcl_node_delete $node
}

}

APPENDIX C. RCL EXAMPLES 139

C.2 O�ine layout

layout(): Off-line layout based on GraphEd’s .gef format.
proc layout { program {window 0} {arctype any} } {

if {$window == 0} {set window [get_window_id]}

set graphin [format "/tmp/%s-in" $window]
set graphout [format "/tmp/%s-out" $window]

Write, layout, read
writeGEF $graphin $window $arctype
exec $program < $graphin.gef > $graphout.gef
readGEF $graphout $window

Cleanup
exec rm $graphin.gef
exec rm $graphout.gef

}

spring(): Run spring layout algorithm.
(Graph must be connected.)
proc spring { {window 0} {arctype any} } {

if {$window == 0} {set window [get_window_id]}

if {[is_connected $window $arctype]} {
layout gel-spring $window $arctype

} else {
rcl_open_message_panel "Error: Graph not connected."

}
}

sugiyama(): Run sugiyama layout algorithm.
(No multiple edges.)
proc sugiyama { {window 0} {arctype any} } {

if {$window == 0} {set window [get_window_id]}

layout gel-sugiyama $window $arctype
}

APPENDIX C. RCL EXAMPLES 140

C.3 LATEX-speci�c node open

rcl_open_node(): LaTeX-mode node navigation.
proc rcl_open_node { node } {

if {[rcl_select_id $node]} {
switch [get_nt $node] {

document -
part -
appendix -
bibliography -
chapter -
subsection -
subsubsection {

set x [expr [rcl_win_x] + 10]
set y [expr [rcl_win_y] + 10]
rcl_open_general $node structural out 0 1 $x $y Structural
sms
rcl_win_set_message "[get_node_attr $node name] opened"

}

section {
set x [expr [rcl_win_x] + 10]
set y [expr [rcl_win_y] + 10]
rcl_open_general $node structural out 1 -1 $x $y Structural
rcl_forward_tree structural -90
rcl_scale_to_window
rcl_win_set_message "[get_node_attr $node name] opened"

}

par -
bibitem {

edit_node $node
}

default {
edit_node_open $node

}

}
}

return
}

APPENDIX C. RCL EXAMPLES 141

C.4 Hypertext complexity metrics

Cp(): Compute the compactness of matrix M.
proc Cp { C } {

global M

set CD 0

for {set i 1} {$i <= $M(n)} {incr i 1} {
for {set j 1} {$j <= $M(n)} {incr j 1} {

incr CD $M($i,$j)
}

}

set mx [expr ($M(n)*$M(n) - $M(n)) * $C]
set mn [expr $M(n)*$M(n) - $M(n)]

set result [expr ($mx - $CD)*1.0 / ($mx - $mn)*1.0]
return $result

}

Cp?(): Show the compactness metric Cp of $window.
proc Cp? { {arctypes any} {window 0} {file tmp} } {

global M
global INFINITY

if {$window == 0} {set window [rcl_win_get_id]}

writeADJ $file $window $arctypes
ffloyd $file.adj
set K $M(n)
convertM $INFINITY $K
msg "Cp = [Cp $K]"
exec rm $file.adj

return
}

APPENDIX C. RCL EXAMPLES 142

St(): Compute the stratum of matrix M.
proc St {} {

global M
global INFINITY

for {set i 1} {$i <= $M(n)} {incr i 1} {
set status($i) 0
set contrastatus($i) 0
for {set j 1} {$j <= $M(n)} {incr j 1} {

if {$M($i,$j) != $INFINITY} {
incr status($i) $M($i,$j)

}
if {$M($j,$i) != $INFINITY} {

incr contrastatus($i) $M($j,$i)
}

}
}

for {set i 1} {$i <= $M(n)} {incr i 1} {
set prestige($i) [expr $status($i) - $contrastatus($i)]

}

set absprestige 0
for {set i 1} {$i <= $M(n)} {incr i 1} {

incr absprestige [iabs $prestige($i)]
}

if {[expr $M(n) % 2] == 0} {
set LAP [expr $M(n)*$M(n)*$M(n) / 4.0]

} else {
set LAP [expr ($M(n)*$M(n)*$M(n) - $M(n)) / 4.0]

}

set result [expr $absprestige / $LAP]

return $result
}

APPENDIX C. RCL EXAMPLES 143

St?(): Show the stratum metric St of $window.
proc St? { {arctypes any} {window 0} {file tmp} } {

global M

if {$window == 0} {set window [rcl_win_get_id]}

writeADJ $file $window $arctypes
ffloyd $file.adj
msg "St = [St]"
exec rm $file.adj

return
}

APPENDIX C. RCL EXAMPLES 144

C.5 Cyclomatic complexity metric

mccabe(): Compute cyclomatic complexity
of $arctype web in neighborhood.
proc mccabe { {arctype any} } {

global VG

Boundary condition
set n [num_nodes_of_current_window]
if {$n == 0} {return 0}

set e [num_arcs_of_current_window]
if {$e > 1} {

set edgecount 0
set selectedarc [first_arc_of_current_window]
for {set i $e} {$i > 0} {incr i -1} {

if {$arctype == "any"} {
incr edgecount 1

} else {
if {[get_arctypename $selectedarc] == $arctype} {

incr edgecount 1
}

}
set selectedarc [next_arc_of_current_window]

}
set e $edgecount

}

p = number of subgraphs in the forest of disconnected
subgraphs (i.e., the number of connected components,
computed by cc()).
set p [cc]

deselect

Calculate V(G)
set VG(e) $e
set VG(n) $n
set VG(p) $p
set VG(result) [expr $e-$n+2*$p]

return $VG(result)
}

APPENDIX C. RCL EXAMPLES 145

C.6 SQL/DS decomposition

Recursion depth limit
set limit 2

BUILD_SUBSYSTEMS(): Recursive subsystem decomposition.
proc BUILD_SUBSYSTEMS { substring counter } {

global limit

if { $counter > $limit } {
GRID_LAYOUT
return

}

scan "A" "%c" char
scan "Z" "%c" Zchar
while { $char <= $Zchar } {

set string [format "$substring%c" $char]
CREATE_SUBSYSTEM "$string" $counter
incr char

}

return
}

CREATE_SUBSYSTEM(): Create subsystem web.
proc CREATE_SUBSYSTEM { name counter } {

set numnodes [GREP $name]

if { $numnodes > 1 } {
set parent_window [GET_ID_CURRENT_WINDOW]
COLLAPSE
RENAME $name
set window [OPEN $name]
BUILD_SUBSYSTEMS [expr $counter + 1]
CLOSE_WINDOW $window
SELECT_WINDOW $parent_window

}

return
}

Vita

Surname: Tilley Given Names: Scott Robert
Place of Birth: Montreal, Quebec Date of Birth: March 15, 1964

Educational Institutions Attended:

Concordia University 1983 | 1986
University of Victoria 1986 | 1989
University of Victoria 1990 | 1995

Degrees Awarded:

B.Comp.Sci. Concordia University 1986
M.Sc. University of Victoria 1989

Honours and Awards:

B.C. Science Council G.R.E.A.T. Award 1991 | 1994
IBM Ph.D. Research Fellowship 1991 | 1993

Publications:

� Marijana Tomic and Scott R. Tilley. \Seven Issues for the Next Generation of Pro-
gram Understanding Systems." To appear in the Proceedings of the Fifth Systems

Reengineering Technology Workshop (SRTW '95), (Monterey, CA; February 07-09,
1995), February 1995.

� Kenny Wong, Scott R. Tilley, Hausi A. M�uller, and Margaret-Anne D. Storey. \Struc-
tural Redocumentation: A Case Study." IEEE Software, 12(1):46-54, January 1995.

� Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and Hausi A. M�uller. \Pro-
grammable Reverse Engineering," International Journal of Software Engineering and

Knowledge Enginering, 4(4), December 1994.

� John Mylopoulos, Martin Stanley, Kenny Wong, Morris Bernstein, Renato De Mori,
Graham Ewart, Kostas Kontogiannis, Ettore Merlo, Hausi M�uller, Scott Tilley, and
Marijana Tomic. \Towards an Integrated Toolset for Program Understanding." Pro-

ceedings of the 1994 IBM CAS Conference (CASCON '94), (Toronto, ON; October
31 - November 3, 1994), pages 19-31, November 1994.

� Scott R. Tilley. \Domain-Retargetable Reverse Engineering II: Personalized User In-
terfaces," Proceedings of the 1994 International Conference on Software Maintenance

(ICSM '94), (Victoria, BC; September 19-23, 1994), pages 336-342, September 1994.
IEEE Computer Society Press (Order Number 6330-02).

� E. Buss, R. De Mori, W. M. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis,
E. Merlo, H. A. M�uller, J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. R. Tilley,
J. Troster and K. Wong. \Investigating Reverse Engineering Technologies for the CAS
Program Understanding Project." IBM Systems Journal, 33(3):477-500, 1994.

� Hausi A. M�uller, Kenny Wong, and Scott R. Tilley. \Understanding Software Sys-
tems Using Reverse Engineering Technology." In Proceedings of the 62nd Congress of

L'Association Canadienne Francaise pour l'Avancement des Sciences (ACFAS '94),

Colloquium on Object Orientation in Databases and Software Engineering, (Montr�eal,
PQ; May 16-17, 1994), pages 41-48, May 1994.

� Kostas A. Kontogiannis and Scott R. Tilley, \Reverse Engineering Questionnaire."
ACM SIGSOFT Software Engineering Notes, 19(1):31-38, January 1994.

� Hausi A. M�uller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. \A Reverse
Engineering Approach to Subsystem Structure Identi�cation." Journal of Software

Maintenance: Research and Practice, 5(4):181-204, December 1993.

� Scott R. Tilley. \Documenting-in-the-large vs. Documenting-in-the-small." In Pro-

ceedings of the 1993 IBM/NRC CAS Conference (CASCON '93), (Toronto, ON; Oc-
tober 25-28, 1993), pages 1083-1090, October 1993.

� Hausi A. M�uller, Scott R. Tilley, and Kenny Wong. \Understanding Software Sys-
tems Using Reverse Engineering Technology: Perspectives from the Rigi Project." In
Proceedings of the 1993 IBM/NRC CAS Conference (CASCON '93), (Toronto, ON;
October 25-28, 1993), pages 217-226, October 1993.

� Scott R. Tilley, Michael J. Whitney, Hausi A. M�uller, and Margaret-Anne D. Storey.
\Personalized Information Structures." In Proceedings of the 11th Annual Interna-

tional Conference on Systems Documentation (SIGDOC '93), (Waterloo, ON; October
5-8, 1993), pages 325-337, IEEE Computer Society Press (Order Number 4600-02),
October 1993.

� Scott R. Tilley, Hausi A. M�uller, Michael J. Whitney, and Kenny Wong. \Domain-
Retargetable Reverse Engineering." In Proceedings of the 1993 Conference on Soft-

ware Maintenance (CSM '93), (Montr�eal, PQ; September 27-30, 1993), pages 142-151,
ACM Order Number 613900, September 1993.

� Scott R. Tilley and Kenny Wong. \Report on NWSEE '93: The 1993 National Work-
shop on Software Engineering Education." Technical Report TR-74.131, IBM Canada
Ltd., August 1993.

� Scott R. Tilley and Hausi A. M�uller. \Using Virtual Subsystems in Project Man-
agement." In Proceedings of the Sixth International Conference on Computer-Aided

Software Engineering (CASE '93), (Institute of Systems Science, National University
of Singapore; July 19-23, 1993), pages 144{153, IEEE Computer Society Press (Order
Number 3480-02), July 1993.

� Scott R. Tilley and Kenny Wong. \Software Engineering Education: A Student
Vision." In Proceedings of the National Workshop on Software Engineering Education

(NWSEE '93), (Toronto, ON; May 31, 1993), pages 155{156, May 1993.

� John Henshaw, Kostas Kontogiannis, Hausi A. M�uller, Scott R. Tilley, Joel Troster,
and Erich Buss. \CASCON '92 Reverse Engineering Workshop Report." Technical
Report TR-74.119, IBM Canada Ltd., May 1993.

� H.A. M�uller, S.R. Tilley, M.A. Orgun, B.D. Corrie, and N.H. Madhavji. \A Reverse
Engineering Environment Based on Spatial and Visual Software Interconnection Mod-
els." In Proceedings of the Fifth ACM SIGSOFT Symposium on Software Development

Environments (SIGSOFT '92/SDE 5), (Tyson's Corner, VA; December 9-11, 1992),
pages 88{98, December 1992.

� Scott R. Tilley. \Management Decision Support Through Reverse Engineering Tech-
nology." In Proceedings of the 1992 IBM CAS Conference (CASCON '92), (Toronto,
ON; November 9-11, 1992), pages 319{328, November, 1992.

� Scott R. Tilley, Hausi A. M�uller, and Mehmet A. Orgun. \Documenting Software
Systems with Views." In Proceedings of the 10th Annual International Conference on

Systems Documentation (SIGDOC '92), (Ottawa, ON; October 13-16, 1992), ACM
Order Number 613920, pages 211{219, October 1992.

� Mehmet A. Orgun, Hausi A. M�uller, and Scott R. Tilley. \Discovering and Evaluating
Subsystem Structures." Technical Report DCS-194-IR, University of Victoria, April
1992.

� H.A. M�uller, B.D. Corrie, and S.R. Tilley. \Spatial and Visual Representations of
Software Structures: A Model for Reverse Engineering." Technical Report TR-74.086,
IBM Canada Ltd., April 1992.

� Scott R. Tilley and Hausi A. M�uller. \INFO: A Simple Document Annotation Fa-
cility." In Proceedings of the 9th Annual International Conference on Systems Docu-

mentation (SIGDOC '91), (Chicago, IL;, October 10-12, 1991), pages 30{36, October
1991.

� Scott R. Tilley. \Changing Module Interfaces." Master's thesis, University of Victoria,
May 1989.

� S.R. Tilley, P. Gallop, and P. Elderon. \Using Inspect for Rapid Development of C
and PL/I Programs." In Proceedings of the IBM Programming Languages Technology

ITL, (Toronto, ON; May 8-11, 1989), pages 8.1{8.9, May 1989.

� S. Tilley and H. M�uller. \Changing Module Interfaces in a Software Development
Environment." In Proceedings of the Sixth National Conference on Ada Technology,
(Arlington, VA; March 14-17, 1988), pages 500{508, March 1988.

� Scott R. Tilley. \CAS|A University Perspective." LogOn, 2(5):20, IBM Canada
Ltd., July 1993.

� Scott R. Tilley. \How To Make Money With Your Home Computer." Hounslow Press,
Toronto, 1993.

� Scott R. Tilley. \Sizing up SIGDOC'91." LogOn, 1(4):13, IBM Canada Ltd., March
1992.

Partial Copyright License

I hereby grant the right to lend my dissertation (the title of which is shown below) to users
of the University of Victoria Library, and to make single copies only for such users or in
response to a request from the Library of any other university, or similar institution, on its
behalf or for one of its users. I further agree that permission for extensive copying of this
dissertation for scholarly purposes may be granted by me or a member of the University
designated by me. It is understood that copying of this dissertation for �nancial gain shall
not be allowed without my written permission.

Title of Dissertation:

Domain-Retargetable Reverse Engineering

Author:
Scott Robert Tilley
January 19, 1995

