
Domain-Retargetable Reverse Engineeringy

Scott R. Tilley Hausi A. M�uller Michael J. Whitney Kenny Wong

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: fstilley, hausi, mwhitney, kenwg@csr.uvic.ca

Abstract

Any response to the software maintenance challenge

must address the underlying problem of program un-

derstanding. One way of doing this is through re-

verse engineering. A successful approach to reverse

engineering must be both
exible and scalable. Most

reverse engineering tools provide a �xed palette of

analysis, extraction, organization, representation, and

selection techniques. This paper describes a user-
programmable approach to reverse engineering. The

approach uses a scripting language that enables users

to write their own routines for these activities, mak-

ing the system domain-retargetable. The environment

supported by this programmable approach subsumes ex-

isting reverse engineering systems by being able to sim-

ulate facets of each one, and provides a smooth tran-

sition from semi-automatic to automatic reverse engi-

neering.

Keywords: domain-retargetable, program under-
standing, reverse engineering, software maintenance

1 Introduction

The primary business of software engineering has
historically been new development; now it is main-
tenance [1]. This fundamental shift was inevitable:
the software profession has reached a turning point,

yThis work was supported in part by the British Columbia
Advanced Systems Institute, IBM Canada Ltd., the IRIS Fed-
eral Centres of Excellence, the Natural Sciences and Engineer-

ing Research Council of Canada, the Science Council of British
Columbia, and the University of Victoria.

Copyright c
 1993 IEEE. Reprinted, with permission,

from CSM '93: The 1993 Conference on Software Main-

tenance, (Montr�eal, Qu�ebec; September 27-30, 1993),
pages 142-151. IEEE Computer Society Press (Order

Number 4600-02).

one where more people are employed to maintain ex-
isting applications than to develop new systems from
scratch. Traditional approaches to the software pro-
cess have placed too much emphasis on the arti�cial
distinction between development and maintenance.
A better term is software evolution, which refers to
the on-going enhancements of existing software sys-
tems, involving both development and maintenance.
Since evolution begins early in the development phase,
the distinction between development and maintenance
should be abandoned in favor of an evolutionary pro-
cess [2, 3]. In fact, learning to master evolving sys-
tems was recently identi�ed as paramount for future
software engineering research [4].

Central to the software evolution challenge is pro-
gram understanding. For large legacy systems,1 this
is a very di�cult task. Unless one has been with a
project since its inception, there is little chance of un-
derstanding a multi-million line program without con-
siderable e�ort|if at all. Perhaps if the overall struc-
ture and maintenance history of the subject system
had been better documented, program understanding
would be easier. Unfortunately, systems that fall into
this category are the exception rather than the rule.
Without such information, a maintainer must rely on
disparate and informal sources of information as an aid
in program understanding. Ultimately, it is the source
code that is the sole objective arbiter [5]. Maintenance
personnel are forced to spend an inordinate amount of
time attempting to create an abstract representation
of the system's high-level architecture by exploring its
low-level source code|not an easy task for large sys-
tems. One way of augmenting this understanding pro-
cess is through reverse engineering.2

Our approach to reverse engineering involves ex-
tracting system abstractions and design information
from existing software systems. This information can

1Legacy software systems are those that are 10-25 years old
and often in poor condition because of prolonged maintenance.

2Speci�cally, authorized reverse engineering of one's own
code. We do not advocate improper reverse engineering of

source code when one does not have the right to do so.

then be used to improve subsequent development,
facilitate maintenance and re-engineering, and aid
project management. The process involves the identi-
�cation of software artifacts in the subject system and
the organization of these artifacts into more abstract
system representations, thereby reducing complexity.
Through reverse engineering, the overall structure of
the subject system can be determined and some of its
architectural design information recovered. Software
structure refers to a collection of artifacts that soft-
ware engineers use to form mental models when de-
signing, documenting, implementing, integrating, in-
specting, or analyzing software systems. Artifacts in-
clude software components such as procedures, mod-
ules, subsystems, and interfaces; dependencies among
components such as supplier-client, composition, and
control-
ow relations; and attributes such as compo-
nent type, interface size, and interconnection strength.
The structure of the system is the organization and in-
teraction of these artifacts [6].

This paper describes an approach to supporting
software evolution through reverse engineering. In
particular, the paper focuses on extensions to an
existing reverse engineering environment to make it

exible and user-programmable, and hence domain-

retargetable. By providing a user-programmable re-
verse engineering environment, the application do-
main need not be limited to one area. Most reverse
engineering tools provide a �xed palette of extrac-
tion, selection, organization, and representation tech-
niques. Our approach uses a scripting language that
enables users to write their own routines for these ac-
tivities. The underlying system is
exible enough to
support the language-dependent extraction of artifacts
from several programming languages, the language-
independent organization of these artifacts into strat-
i�ed subsystems through user-de�ned clusterings, and
the presentation and documentation of the resultant
structures in a user-selectable manner.

The sequel outlines three desirable properties of a
reverse engineering system:
exibility, scalability, and
domain independence. Section 3 describes the archi-
tecture of an existing reverse engineering environment
and comments on how well it addresses these three
goals. Section 4 presents the extensions to this system
required to make it a programmable reverse engineer-
ing environment. Section 5 summarizes the paper and
brie
y discusses future work.

2 Domain retargetability

In our approach to reverse engineering,
exibility

and scalability are key requirements. The approach
must be
exible so that the results can be applied to
many diverse program understanding scenarios as well
as di�erent target domains. \Domains" in this sense
is an overloaded term. It refers to di�erent applica-

tion domains, such as banking or database systems;
implementation domains, including the application's
implementation language; and the reverse engineering

domain, in which the software engineer models and
represents the subject system. Our current objective
with respect to scale is 2-3 million lines-of-code, which
includes many evolving legacy systems.

One way of maximizing the usefulness of a reverse
engineering system is to make it domain-speci�c. By
doing so, one can provide users with a system tailored
to a certain task and exploit any features that make
performing this task easier. However, by taking this
approach the system's usefulness becomes restricted
to a particular domain. Using the same system on a
di�erent task, even one that is similar, may be impos-
sible.

An alternative to making the system powerful
by making it domain-speci�c, is to make it user-
programmable and hence domain-retargetable. One
would like to make the approach as
exible as
possible|a subtle distinction from general. Software
can be considered general if it can be used without
change; it is
exible if it can be easily adapted to be
used in a variety of situations [7]. General solutions
often su�er from poor performance or lack of features
that limit their usefulness. Flexible solutions may be
tailored by the user to fully exploit aspects of the prob-
lem that make its solution easier.

2.1 Flexibility

Flexibility applies to many aspects of reverse en-
gineering. In particular, we mean the extensibility,
tailorability, and con�gurability of both the reverse
engineering system's methodologies and its support-
ing environment. One achieves domain-retargetability
through the
exibility of the system as it adapts to
new domains. In fact, scalability could be considered
to be an aspect of
exibility, but it is such an impor-
tant aspect that we treat it separately.

2.1.1 Extensible functionality: Perhaps the
most important goal for a successful reverse engineer-
ing environment is to provide a mechanism through
which users can extend the system's functionality. For

example, it should be possible to augment the search
and selection operations of the graph editor with user-
de�ned algorithms or to interface with external tools.
Since change requests are often couched in terms of
the user's view of the application, much of the ef-
fort involved in software maintenance is in locating
the relevant code fragments that implement the con-
cepts in the application domain. One should be able to
use tools that support advanced clustering techniques,
such as the teleologic-based IRENE [8] and DESIRE
[9, 10], and have the results of their search made avail-
able to the user and the environment.

2.1.2 Incremental reverse engineering: Most
reverse engineering systems parse source code and
extract complete abstract syntax trees with a large
number of �ne-grained syntactic objects and depen-
dencies. This strategy works well for relatively small
subject systems and programming-in-the-small tasks.
However, for large legacy systems in the million-lines-
of-code range, the resulting databases can be huge
and unmanageable. One approach is to populate the
database with coarse-grained objects only. Another
strategy is to allow the user to specify pertinent sub-
sets of the source code and/or the database. For ex-
ample, one may only be interested in the call structure
of a selected set of subsystems, not all dependencies of
the entire program. Hence, incremental reverse engi-
neering is a desirable feature for programming-in-the-
large.

2.1.3 Semi-automatic and automatic subsys-

tem composition: Constructing abstract represen-
tations of the source code should be possible both au-
tomatically and semi-automatically. The user should
be able to experiment with various decompositions.
For example, a long-term goal of reverse engineering
might be actual physical re-modularization of a system
so as to minimize inter-module coupling and maximize
intra-module cohesion. The system should be able to
compute such modularizations automatically, and stop
when a user-de�ned termination condition is met.

2.1.4 Tailorable user-interface: It is desirable
to allow users as much freedom as possible in con-
�guring the system to their liking. This con�gura-
bility includes modi�cation of the system's interface
components such as buttons, dialogs, menus, scroll-
bars, and so on. Experienced users should be able
to create time-savingmeta-commands or \accelerator"
key sequences. More importantly, to achieve domain-
retargetability it should be possible to alter the sys-
tem's functionality by changing the commands associ-
ated with elements of the user interface.

2.1.5 User-de�ned extraction and �ltering:

The users should be able to indicate what they want
extracted from the source code at extraction time.3

Moreover, they should be able to highlight important
objects and dependencies, and de-emphasize immate-
rial ones.

2.1.6 User-de�ned multiple views: Most exist-
ing systems provide the user with a �xed set of view
mechanisms, such as call graphs and module charts.
While this set might be considered large by the sys-
tem's producers, there will always be users who want
something else. One cannot predict which aspects of
a system are important for all users, and how these
aspects should be documented, represented, and pre-
sented to the user. This is an example of the trade-o�
between open and closed systems. An open system
provides a few primitive operations and mechanisms
for user-de�ned extensions. A closed system provides
a \large" set of built-in facilities, but no way of ex-
tending the set.

2.2 Scalability

It is essential that any reverse engineering approach
be applicable to large software systems. By large, we
mean on the order of several million lines of code. Such
a scale often precludes the use of many programming-
in-the-small approaches to program understanding.
There is a signi�cant di�erence between programs of
1,000 lines, of 100,000 lines, and of 1,000,000 lines.
The latter requires a signi�cantly di�erent approach to
program understanding. The repository must be able
to handle very large databases e�ciently, the search
strategies used must be e�ective, and the user interface
must support the manipulation of very large graphs.

For very large systems, the information generated
during reverse engineering is prodigious. Presenting
the user with reams of data is insu�cient. Knowledge
is gained only through the understanding of this data.
In a sense, a key to program understanding is deciding
what information is material and what is immaterial:
knowing what to look for|and what to ignore [11].

2.3 Domain independence

Many current systems support only relatively small
programs. Others support just one programming lan-
guage, usually because their parsing system, database,
and support environment are tightly coupled. Some

3The term \extraction time" is similar to \compile time,"
except it does not imply generating code per se. It refers to the

�rst phase of reverse engineering: populating a database with
the information extracted from the source code.

environments support only a subset of the subject sys-
tem's implementation language. This approach lim-
its the application domain to small, \pure" programs
rarely found in practice. One must take a pragmatic
point of view; if the methodology does not work on
real-world software systems, with all their \features,"
then it will not make an impact on existing systems.

To achieve high functionality, many systems are
targeted toward a single application domain, such as
COBOL banking programs. While such systems are
useful in their particular area, they are not widely ap-
plicable in others. It would be better to provide users
with a system that is
exible enough to be easily retar-
geted to new application domains, yet still maintain
its full functionality. The next section describes our
reverse engineering environment as it exists today, and
comments on how well it meets the goals of
exibility,
scalability, and domain independence.

3 The Rigi system

Rigi4 [12] is a versatile system and framework un-
der development at the University of Victoria for dis-
covering and analyzing the structure of large software
systems. It supports the following desirable features
of a reverse engineering environment:

� A variety of parsing systems to support the com-
mon programming languages of legacy systems;5

� A repository to store the information extracted
from the source code;

� An interactive graph editor that permits graphi-
cal manipulation of source code representations.

This section describes the overall architecture of the
Rigi system, and comments on some of our early case-
study experiences. These case studies helped guide
the development of Rigi, and are the motivation be-
hind the subject of this paper: making the reverse
engineering environment programmable. We brie
y
outline the Rigi approach to reverse engineering be-
low. A more detailed description of our methodology
can be found in [13].

3.1 Reverse engineering

The process of reverse engineering a subject sys-
tem involves the identi�cation of the system's current

4Rigi is named after a mountain in central Switzerland.
5Such systems are typicallywritten in procedural, imperative

programming languages such as C, COBOL, FORTRAN, and
PL/I.

components and their dependencies, and the extrac-
tion of system abstractions and design information.
During this process, the subject system is not altered,
although additional information about it is generated.

In our approach, the �rst phase of the reverse engi-
neering process|the extraction of software artifacts|
is automatic and language-dependent. It essentially
involves parsing of the subject system and storing the
artifacts in a repository. Some of our early work re-
sulted in a graph model for software structures and a
graph editor supporting the model [14]. The artifacts
are stored in an underlying database speci�cally de-
signed to represent graph structures. The Rigi graph
editor allows the users to edit, maintain, and explore
the objects stored in the repository.

Our approach to the second phase is semi-
automatic and features language-independent subsys-
tem composition methods that generate hierarchies of
subsystems [15]. Subsystem composition is the process
of constructing composite software components out of
building blocks such as variables, procedures, mod-
ules, and subsystems. Hierarchical subsystem struc-
tures are formed by imposing equivalence relations on
the resource-
ow graphs of the source code. These
relations embody software engineering principles con-
cerning module interactions such as low coupling and
strong cohesion [16]. We have also formulated soft-
ware quality criteria and measures, based on exact
interfaces and established software engineering prin-
ciples, to evaluate the resultant subsystem structures
[17, 18]. These measures are not meant to be abso-
lute; they are used to judge the relative merits of one
system decomposition with respect to another.

3.2 Rigi's architecture

Rigi is composed of three major subsystems:
rigireverse, rigiedit, and rigiserver, each of
which is discussed in turn below. The high-level archi-
tecture of Rigi is depicted in Figure 1. The philosophy
behind Rigi is a set of cooperating and communicating
tools. The parsing system extracts information from
the source code and populates the database. The user
manipulates the database using the graph editor. The
entire system is distributed and multi-user, runs on a
variety of hardware platforms (Sun 3, Sun 4, and IBM
RS/60006), and provides user interfaces under three
di�erent windowing systems (Motif,7 Open Look,8 and

6IBM and Risc System/6000 are trademarks of the Interna-
tional Business Machines Corporation.

7Motif (OSF/Motif) is a trademark of the Open Software
Foundation.

8Open Look (OPEN LOOK) is a trademark of AT&T and
Sun Microsystems.

creverse

c++reverse

cobolreverse

latexreverse

plasreverse

Motif

Open Look

Sunview

GRAS

Rigi

rigireverse rigiserver rigiedit

Figure 1: The Rigi environment's main components

SunView9).

3.2.1 rigireverse: rigireverse is the parsing
system, which currently supports C, C++, COBOL,
LaTEX, and PL/AS.10 Based on a user-selectable op-
tion, rigireverse invokes a parsing subsystem spe-
ci�c to the application programming language. The
parser also extracts �le system information, such as
directory structure and #include �le dependencies, if
appropriate. Users can choose to create an initial sub-
system decomposition based on the current physical
structure of the source code, or to ignore this informa-
tion and generate a
at resource-
ow graph.

In the long term, we would like to replace our
parsers with an interface to a central repository. The
repository would hold information extracted by an
industrial-strength compilation system, thereby free-
ing us from the laborious task of writing a new parser
every time we want to support a new programming
language. From a reverse engineering point of view,
parsing is essential but laborious. For example, we do
not have the resources necessary to parse all variants of
COBOL. It is better to leverage mature compiler tech-
nology and make use of the generated information.11

3.2.2 rigiedit: rigiedit constitutes the user in-
terface of the Rigi system and a graph editor with
which users manipulate graphical representations of
the subject system during reverse engineering. The

9SunView is a trademark of Sun Microsystems Inc.
10PL/AS is a PL/I-like development language used within

IBM.
11We are investigating using the program information base

produced by the IBM xlC C++ compiler to supplant our C++
parser.

operations provided by the editor are rich because of
parameterization, but the total set is �xed. A large
set of selection and graph manipulation operations are
provided. The implicit assumption within the editor
is that one is reverse engineering an application writ-
ten in one of the imperative programming languages
mentioned above.12 Consequently, the operations are
geared toward coupling and cohesion as the guiding
measurements used when selecting components to be
collapsed into a subsystem. The selection operations
depend strongly on client/supplier relationships.

The structuring mechanism supported by the edi-
tor is (k; 2)-partite graphs|a class of layered graphs
[20]. Dependencies within each layer are based on re-
source
ow and exchange of programming-language re-
sources. Dependencies between layers represent aggre-
gation relations.13

3.2.3 rigiserver: rigiserver is the central
database repository. It is initially populated by the
rigireverse program, and subsequently manipulated
by the reverse engineer through the rigiedit pro-
gram. The database we use is GRAS, a distributed,
multi-user, network model database well suited to rep-
resenting graph structures [21].

3.3 Experience with Rigi

Since 1990, we have performed three major case
studies using Rigi to reverse engineer third-party ap-
plications. The �rst was in 1990 when we were asked
by a local company to reverse engineer their 57,000-
line COBOL program. In 1991, we analyzed an 82,000-
line C program. We started work on our current
project in late 1992. This most recent case study is
concerned with analyzing a large commercial database
management system (SQL/DS14) in conjunction with
the IBM Canada Ltd. Centre for Advanced Studies in
Toronto. The SQL/DS system consists of over a mil-
lion lines of PL/AS and has gone through numerous
revisions during its lifetime.

It was through our initial work on analyzing the
SQL/DS code that shortcomings of the current Rigi
system were exposed. Reverse engineering of such a
large system necessitated changes to all three parts of
the environment, but mainly to the graph editor. The

12Except for LaTEX documents. In this case, rigiedit is used
in a slightly di�erent mode [19].

13The extensions to Rigi to support programmable reverse en-

gineering will not alleviate the structuring restriction of (k; 2)-
partite graphs. However, we are planning on supporting multi-
ple user-de�ned hierarchies other than composition and aggre-
gation in the future.

14SQL/DS is a trademark of the International Busisness Ma-
chines Corporation.

parsing system was augmented with a PL/AS interface
and successfully processed the entire source code in an
incremental manner. The database was able to han-
dle the large graph structures produced by the parser,
although its performance degraded somewhat. Over-
all, rigireverse and rigiserver needed only minor
changes. It was in the user interface, rigiedit, that
more fundamental changes were required.

Some of the changes required were cosmetic. For
example, we changed the editor so that the screen is
not redrawn every time a single graph operation is
carried out. Graphs with over 10,000 nodes and arcs
need to be refreshed e�ectively to avoid degrading in-
teractive response time. A more dramatic change was
needed in one of the basic philosophies underlying our
approach. We have always felt that a semi-automatic
reverse engineering environment is better than a fully
automatic one, because human cognitive powers are
still much more powerful and
exible than algorithms
built-in to the environment. Moreover, it is important
for the reverse engineer to be in charge of choosing
editing operations. The tools provide information, and
the reverse engineer acts upon the information when
composing subsystems. However, many of the oper-
ations being performed during the initial decomposi-
tion of the SQL/DS code were repetitive, and could
be automated. The user would still be in charge of
accepting, rejecting, or modifying subsystem decom-
positions automatically produced by the environment,
but the decomposition itself could be made easier.

We have demonstrated Rigi at several software engi-
neering conferences in the last few years. Many of the
questions and comments from those who viewed the
system concerned incorporating their \favorite" met-
ric into the editor and connecting the system to o�-
the-shelf tools. For example, the measures built-in to
the system quantify encapsulation and partition qual-
ity of the generated graphs. They do not measure com-
mon metrics such as cyclomatic complexity. Rather
than rewriting these routines from scratch, it would be
better to interface the system to o�-the-shelf software
that already implements the desired functions. We
would also like to integrate Rigi with complementary
tools and systems under development by our research
partners. For instance, we want to augment one of
our simple selection operations, which is essentially a
grep facility, with a more powerful search mechanism
such as SCRUPLE [22], which uses advanced syntactic
pattern-matching at the programming-language level.

To summarize, the current Rigi environment is
reasonably
exible, scalable, and domain indepen-
dent. The graph editor operations are language-
independent, which is both an advantage and a detri-

ment. It is an advantage, since it means a single
tool will work for systems written in most imperative
programming languages. It is a detriment because it
means domain knowledge is lost. Our experiences with
the SQL/DS code indicate the methodology scales-up
into the million-lines-of-code range. However, to truly
satisfy the desirable goals of
exibility, scalability, and
domain independence, we need a programmable re-
verse engineering environment; one in which the user
interface is tailorable by the user, in which the op-
erations provided by the environment are selectable
and augmentable by the user, and in which parts of
the reverse engineering process are automated. Such
a system is described in the next section.

4 Programmable reverse engineering

To support the goals outlined in Section 2 and
achieve domain-retargetability, we extended the Rigi
environment described in Section 3. This section de-
scribes the required changes to Rigi to support the
approach. It also discusses the bene�ts of a library of
reverse engineering scripts, and presents examples of
scripts used in the extended environment.

4.1 Extending Rigi to support the

approach

The main component to be changed was rigiedit,
the graph editor. Previously, it consisted of two
tightly-coupled subsystems: the user interface and the
editor itself. All editing and selection operations were
inter-mingled with operations for manipulating the
user interface, such as window size, menu selection,
and so forth. There are two phases to the changes in
rigiedit. The �rst phase was to extend the editor's
functionality. The second phase is to make the user
interface tailorable.

4.2 Phase I: Extending the editor's

functionality

To extend the editor's functionality, we decoupled
the graph editor from the graphical user interface. We
then introduced a transparent intermediate layer be-
tween the graphical user interface and the graph ed-
itor. This was needed to make the environment pro-
grammable.

4.2.1 Decoupling the graph editor and user

interface: Phase one of the changes to rigiedit in-
volves providing the users with a programmable graph

editor. Decoupling the editor from the user interface
makes it possible to program editor operations inde-
pendently of graphical user actions, and to tailor the
user interface to personal taste. The graph editor now
provides a set of primitive operations for manipulat-
ing nodes and arcs. The meanings of these operations
are implicitly de�ned by the user and the application
domain.

4.2.2 Scripting language: It is hard for any appli-
cation designer to predict all the ways the application
will be used. In a reverse engineering environment,
one of the goals is to facilitate program understand-
ing. Because people learn in di�erent ways (for ex-
ample, goal-directed (top-down and inductive) versus
scavenging (bottom-up and deductive)), the environ-
ment should be
exible enough to support di�erent
types of learning. Providing a programmable script-
ing language is one way of achieving this goal.

A scripting language ampli�es the power of the en-
vironment by allowing users to write scripts to ex-
tend the tool's facilities. A perfect example is the
UNIX15 shell. A scripting language is extremely useful
in a windowing environment; it just works \behind the
scenes". Users who accept the default will be unaware
of a scripting language|but its power is available to
those users who want to take advantage of it.

Instead of writing yet another command language,
we chose to use Tcl [23]. It provides an extendable core
language, and was speci�cally written as a command
language for interactive windowing applications. It
also provides a convenient framework for communicat-
ing between Tcl-based tools. Each application extends
the Tcl core by implementing new commands that
are indistinguishable from built-in commands, but are
speci�c to the application. These new commands may
be implemented as C (or C++) procedures or as Tcl
scripts.

The philosophy behind Tcl is that each event of
any importance to the application should be bound to
a Tcl command: each keystroke, mouse motion, but-
ton press, and menu entry. When the event occurs,
it is �rst mapped to its Tcl command, and then exe-
cuted by passing the command to the Tcl interpreter,
which calls the appropriate C call-back routine that
implements the Tcl command. Complex sets of oper-
ations can be described with a script and then associ-
ated with a menu entry or accelerator key so that the
compound command can be easily invoked. We have
changed the editor so that each Rigi command, which
was previously only available by menu operations, is
now implemented as a Tcl command. The menu op-

15UNIX is a trademark of Unix Systems Laboratories, Inc.

rigiedit

UI Tcl editor

Selection

Clustering

Operations

Motif / Tk

Motif / Xm

Open Look / XView

Sunview

Figure 2: Extending rigiedit

eration actually invokes the Tcl script, which in turn
calls the appropriate editor operation.

Tcl is application-independent and provides two
di�erent interfaces: a textual interface to users who
issue Tcl commands, and a procedural interface to
the application in which it is embedded. In the new
rigiedit, the Tcl interpreter sits between the graph-
ical user interface and the graph editor, as shown in
Figure 2. For those who have used the Rigi environ-
ment before, the creation of an intermediate layer and
the use of Tcl is not visible; they continue to manipu-
late the editor using the graphical user interface alone.

4.3 Phase II: Making the user interface

tailorable

Phase two of the changes to rigiedit involves pro-
viding the users with a con�gurable user interface.16

Besides using Tcl as a scripting language to enable
users to con�gure the reverse engineering environ-
ment's actions, one may use Tcl in conjunction with
the Tk toolkit to con�gure the environments interface.
Tk is an X11 toolkit that implements the Motif look-
and-feel. It is similar in functionality to the Xm toolkit
which we currently use for our Motif interface, except
that it may be programmed in Tcl rather than C.

By using Tcl as an intermediary for all interface
actions, users can write Tcl scripts to recon�gure the
interface. For example, they can rebind keystrokes,
change mouse buttons, or replace an existing opera-
tion with a more complex one speci�ed as a set of Tcl
commands. By using the Tk toolkit, one can recon-

16We expect to begin this second phase of the changes to
rigiedit in the Fall of 1993.

�gure the appearance of the environment. All of the
system's interface components can be con�gured us-
ing Tcl commands. This makes it possible for users
to write Tcl programs to personalize the layout and
appearance of the environment as desired.

Users can write scripts that are read automatically
upon rigiedit invocation, which tailor the interface
to suit their needs. Moreover, since the scripting
language is interpreted, the graphical user interface
can be dynamically altered by using the appropriate
Tcl/Tk commands.

4.4 Bene�ts of the approach

Previously, all interaction with the graph editor was
interactive and human-intensive. Over time, experi-
enced software engineers create a repertoire of com-
monly used reverse engineering techniques, which they
must repeat every time. By separating the user inter-
face from the structural-manipulation aspects of the
editor, much of the reverse engineering can be done in
batch procedures. Users can produce a library of use-
ful reverse engineering scripts by bundling groups of
often used commands together into procedures. Such
scripts can assist in automating recurring tasks [24].
More important, users can create libraries of domain-
dependent reverse engineering strategies. As their ex-
pertise in their application domain grows, so will their
library of scripts. This approach is analogous to pro-
viding a separate I/O library in C; rather than de�ning
a �xed set of primitives, I/O was left out of the lan-
guage de�nition and made user-de�nable. The script-
ing language serves a similar function in our reverse
engineering environment.

The scripting mechanism enables the environment
to run in batch mode. In this manner, subsystem
compositions produced in a previous session can be
automatically recreated; all commands are logged to a
script-based command �le that can then be reloaded
upon startup. Interactive sessions are recorded and
replayed as a sequence of Tcl commands. It is also
possible to write Tcl scripts that simulate the actions
of the program for demonstration purposes.

The programmable approach provides a smooth
transition from semi-automatic to automatic reverse
engineering. It makes it possible to automatically de-
compose systems according to user-de�ned criteria,
such as those based on coupling and cohesion metrics.
Programmable decomposition criteria also enable the
environment to simulate other reverse engineering ap-
proaches. For example, the system-restructuring algo-
rithm based on alteration distance as described in [25]
could be implemented as a combination of Tcl scripts

and C code. Or, users could write scripts to select
subsystems based on decomposition slices [26, 27, 28].
In essence, this programmable approach subsumes ex-
isting reverse engineering systems that provide a �xed
set of operations, by being able to simulate facets of
each one.

4.5 Example scripts

Scripts may be used to replace common editing op-
erations. For example, the script my open shown in
Figure 3 is designed to replace the default open oper-
ation within the editor. Instead of simply opening a
composite node to show its children without format-
ting or scaling, it opens the node and presents all its
children in a grid format, scaled to the current win-
dow. The three steps fselect, group, scaleg are often
used during exploratory reverse engineering.

The script build subsystems, also shown in Fig-
ure 3, may be used to automatically decompose a sys-
tem into subsystems using name search as the selection
operation. This simple search technique has proven to
be extremely useful when reverse engineering large ap-
plications which follow a naming convention. To use
build systems, the user invokes the procedure with
a list of names to be used, as in `build subsystems

ARIM ARIX ARIY.'
One of the most common editing operations per-

formed when using Rigi is a combination of selection
and grouping operations. They are often used to get
an initial view of the potential entry and exit points
in a subsystem. The system by itself does not provide
any advanced graph layout algorithms. However, by
using Tcl's inter-process communication mechanism,
one can use an external graph layout package to place
the nodes as desired. For the purposes of this exam-
ple, we will use Rigi's built-in layout operations, which
place nodes either all on top of one another, or in
a simple geometric pattern: horizontal rows, vertical
columns, or on a grid. The script for performing this
operation, called sandwich, is also shown in Figure 3.
The result of using this script in our environment is
depicted in Figure 4.

5 Summary

Controlled software evolution is attainable only
with improved program understanding techniques.
However, the understanding process is more depen-
dent on individuals and their speci�c cognitive abil-
ities than on the limited set of facilities that tools
provide. Understanding also requires the ability to

proc build_subsystems args
{
 foreach node $args {
 delect all
 select grep $node"*"
 edit collapse
 edit rename $node
}

}

proc my_open {node}
{
 open node $node
 select all
 group grid
 scale window
}

Bottom-layer
deselect all
select arc thresholds
set arc direction suppliers
perform
move group horizontal

}

Get to base-level RFG
open node "Rigi"
open node "Base System"
open node "src"
operation project subsystem
select all
move group grid

Top-layer
deselect all
select arc thresholds
set arc threshold 0
set arc direction clients
set arc type composite
set node type equal
perform
move group horizontal

proc sandwich {}
{

my_open

build_subsystems sandwich

Figure 3: Sample scripts

adapt to various application domains, implementation
languages, and working environments. This paper dis-
cusses an approach to program understanding through
programmable reverse engineering, which gives indi-
viduals the ability to tailor their environment to suit
their needs.

The approach achieves
exibility by means of a
high-level separation between reverse engineering sys-
tem components, and the incorporation of a script-
ing language that provides an interfacing mechanism.
The power of the system is found in the cooperative
use of small command scripts. The scripts give users
the ability to extend the tools in their reverse engi-
neering toolbox by de�ning, storing, and retrieving
commonly-used operations. Using Tcl as the scripting
language enables us to leverage skills of other people
and groups who write Tcl scripts; if we had written

Figure 4: Result of running the sandwich script

our own scripting language, this would not have been
possible to nearly the same extent.

A decoupled interface between system components
provides an increased ability to integrate the reverse
engineering environment with existing tools. This al-
lows the environment itself to evolve|without requir-
ing continual rewriting. Together with user-de�ned
scripts, whole libraries of program understanding tech-
niques may be gathered or created, and maintained.

We are currently in the process of decoupling our
own Rigi reverse engineering system, so that the
scripting language may be fully incorporated. Our
next task will be to complete the support for user-
tailorable interfaces, and integrate our system with
other reverse engineering and compiler tools.

References

[1] R. L. Glass. We have lost our way. The Journal of

Systems and Software, 18(3):111{112, March 1992.

[2] L. A. Belady and M. M. Lehman. A model of large

program development. IBM Systems Journal, 15:225{

252, 1976.

[3] D. C. Poo and P. J. Layzell. An evolutionary struc-

tural model for software maintenance. The Journal of
Systems and Software, 18(2):113{123, May 1992.

[4] W. F. Tichy, N. Habermann, and L. Prechelt. Sum-

mary of the Dagstuhl workshop on future directions in

software engineering. ACM SIGSOFT Software En-

gineering Notes, 18(1):35{48, January 1993.

[5] N. T. Fletton and M. Munro. Redocumenting soft-

ware systems using hypertext technology. In CSM'88:

Proceedings of the 1988 Conference on Software Main-

tenance, (Phoenix, Arizona; October 24-27, 1988),

pages 54{59. IEEE Computer Society Press (Order

Number 879), October 1988.

[6] H. L. Ossher. A mechanism for specifying the struc-

ture of large, layered systems. In B. D. Shriver and

P. Wegner, editors, Research Directions in Object-

Oriented Programming, pages 219{252. MIT Press,

1987.

[7] D. L. Parnas. Designing software for ease of exten-

sion and contraction. IEEE Transactions on Software

Engineering, SE-5(2):128{137, March 1979.

[8] V. Karakostas. Intelligent search and acquisition of
business knowledge from programs. Journal of Soft-

ware Maintenance: Research and Practice, 4:1{17,

1992.

[9] T. J. Biggersta�. Design recovery for maintenance

and reuse. IEEE Software, 22(7):36{49, July 1989.

[10] T. J. Biggersta�, B. G. Mitbander, and D. Webster.

The concept assignment problem in program under-
tsanding. In WCRE '93: Proceedings of the 1993

Working Conference on Reverse Engineering, (Bal-

timore, Maryland; May 21-23, 1993), pages 27{43.
IEEE Computer Society Press (Order Number 3780-

02), November 1992.

[11] M. Shaw. Larger scale systems require higher-level

abstractions. ACM SIGSOFT Software Engineering

Notes, 14(3):143{146, May 1989. Proceedings of the

Fifth International Workshop on Software Speci�ca-

tion and Design.

[12] H. A. M�uller. Rigi { A Model for Software Sys-

tem Construction, Integration, and Evolution based

on Module Interface Speci�cations. PhD thesis, Rice

University, August 1986.

[13] H. M�uller, S. Tilley, M. Orgun, B. Corrie, and

N. Madhavji. A reverse engineering environment

based on spatial and visual software interconnection
models. In SIGSOFT '92: Proceedings of the Fifth

ACM SIGSOFT Symposium on Software Develop-

ment Environments, (Tyson's Corner, Virginia; De-

cember 9-11, 1992), pages 88{98, December 1992. In

ACM Software Engineering Notes, 17(5).

[14] H. M�uller and K. Klashinsky. Rigi | A system

for programming-in-the-large. In ICSE '10: Proceed-

ings of the 10th International Conference on Software

Engineering, (Ra�es City, Singapore; April 11-15,

1988), pages 80{86, April 1988. IEEE Computer So-
ciety Press (Order Number 849).

[15] H. A. M�uller, M. A. Orgun, S. R. Tilley, and J. S.
Uhl. A reverse engineering approach to subsystem

structure identi�cation. Journal of Software Mainte-

nance: Research and Practice, 1993. In press.

[16] G. Myers. Reliable software through composite design.

Petrocelli/Charter, 1975.

[17] H. M�uller. Verifying software quality criteria using an

interactive graph editor. In Proceedings of the Eighth

Annual Paci�c Northwest Software Quality Confer-

ence, (Portland, Oregon; October 29-31, 1990), pages

228{241, October 1990. ACM Order Number 613920.

[18] M. A. Orgun, H. A. M�uller, and S. R. Tilley. Discov-
ering and evaluating subsystem structures. Techni-

cal Report DCS-194-IR, University of Victoria, April

1992.

[19] S. R. Tilley, M. J. Whitney, H. A. M�uller, and M.-
A. D. Storey. Personalized information structures.

SIGDOC '93: The 11th Annual International Con-

ference on Systems Documentation, (Waterloo, On-
tario; October 5-8, 1993), pages 325{337, October

1993. ACM Order Number 6139330.

[20] H. M�uller and J. Uhl. Composing subsystem struc-

tures using (k,2)-partite graphs. In Proceedings of

the Conference on Software Maintenance 1990, (San

Diego, California; November 26-29, 1990), pages 12{

19, November 1990. IEEE Computer Society Press
(Order Number 2091).

[21] N. Kiesel, A. Sch�urr, and B. Westfechtel. GRAS: A
graph-oriented database system for (software) engi-

neering applications. In CASE '93: The Sixth In-

ternational Conference on Computer-Aided Software

Engineering, (Institute of Systems Science, National

University of Singapore, Singapore; July 19-23, 1993),
pages 272{286, July 1993. IEEE Computer Society

Press (Order Number 3480-02).

[22] S. Paul. SCRUPLE: A reengineer's tool for source

code search. In CASCON'92: Proceedings of the 1992

CAS Conference, (Toronto, Ontario; November 9-12,
1992), pages 329{345. IBM Canada Ltd., November,

1992.

[23] J. K. Ousterhout. An Introduction to Tcl and Tk.

Addison-Wesley, 1993. To be published.

[24] E. A. Idler. A visual scripting language. Master's
thesis, University of Victoria, 1989.

[25] S. C. Choi and W. Scacchi. Extracting and restruc-

turing the design of large systems. IEEE Software,

7(1):66{71, January 1990.

[26] R. Gopal. On Supporting Software Evolution: Au-

tomatic Decomposition Schemes Based on Static and

Dynamic Analysis of Programs. PhD thesis, Vander-

bilt University, 1989.

[27] K. B. Gallagher. Evaluating the Surgeon's Assistant:

Results of a pilot study. In CSM'92: Proceedings of

the 1992 Conference on Software Maintenance, (Or-

lando, Florida; November 9-12, 1992), pages 236{244.

IEEE Computer Society Press (Order Number 2980),
November 1992.

[28] R. Gopal, R. Prasad, and R. Gopal. Supporting

systems maintenance with automatic decomposition

schemes. In B. D. Shriver, editor, Proceedings of

the Twenty-Fifth Annual Hawaii International Con-

ference on System Sciences, pages 507{516, January

1992.

