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Abstract

Software project management cannot be performed
without a sufficient understanding of the entire soft-
ware system. When it comes to making informed
project-related decistons, management personnel re-
quire a high-level understanding of the entire system
and in-depth information on selected components. Un-
fortunately, many software systems are so complex
and/or old that such information is not readily avail-
able. Reverse engineering—the process of extracting
system abstractions and design information from exist-
g software systems—can provide some of this miss-
g information. This paper outlines how risk analysts
and project management can be tmproved through the
use of virtual subsystems created through reverse engi-
neering.

Keywords: project management, program under-
standing, reverse engineering, risk analysis.

1 Introduction

System comprehension is the most important pre-
requisite for maintaining and managing a software sys-
tem. Managers require a high-level understanding of
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the entire system. They may also need in-depth in-
formation on selected parts of the system to aid them
in making decisions related to project management.
This is a difficult task for managing legacy systems:
software systems that are 10-25 years old and often in
poor condition. Contributing factors include the lack
of accurate documentation, the sheer size of the sys-
tem, the unstructured programming methods used in
the system’s design, the fact that the original system
designers, managers, and programmers may no longer
be available, and the complication that the software
has been changed several times since its first release,
and thus has evolved into something different from the
original [1]. Because of the lack of high-level infor-
mation, risk analyses and high-level project manage-
ment decisions are often based on whatever data can
be gleaned from the low-level source code—mnot an easy
task for multimillion line systems.

This problem is exacerbated for management per-
sonnel because they may lack in-depth technical
knowledge of the product(s) they are managing. They
rely on data provided by senior members of their de-
partment, “gut” feelings, and experience. Anything
that can increase their understanding of the software
system(s) they are responsible for and aid them in
risk analysis and making important project-related
decisions—such as where to allocate precious funds,
where to place key personnel, and where to concen-
trate effort for maximum pay-back—would be benefi-
cial. Reverse engineering is one way of helping them.

Reverse engineering is the process of extracting sys-
tem abstractions and design information from exist-
ing software systems. This information can then be
used for subsequent development, maintenance, re-
engineering, and project management purposes. This
process involves the identification of software artifacts
in the subject system, and the aggregation of these ar-
tifacts to form more abstract system representations
to reduce complexity. Through reverse engineering,
the overall structure of the subject system can be de-



termined, and some of its architectural design infor-
mation recovered. An approach to reverse engineering
based on building hierarchies of subsystem structures
out of software building blocks is outlined in [2]. This
approach is supported by Rigi* [3], a versatile system
and framework under development at the University
of Victoria for discovering and analyzing the structure
of large software systems.

The hierarchical subsystem structures created by
the reverse engineer can be used to impose logi-
cal structure on legacy systems. Because prolonged
maintenance tends to degrade software structure, it
i1s sometimes advantageous to disregard the existing
modularization based on the source code’s physical
structure. Instead, one can construct aggregations of
software artifacts based on whatever clustering and se-
lection criteria are deemed appropriate for enhancing
the understanding of the entire system or of selected
subsystems of relevance. Different views of the soft-
ware system may be produced for diverse audiences by
using different clustering guidelines. Moreover, these
views may coexist simultaneously and are kept up-to-
date automatically. The result of this logical structur-
ing is wirtual subsystems: multiple abstract represen-
tations of a software system’s architecture.

This paper describes how project management can
benefit from reverse engineering.? In particular, it
focuses on how virtual subsystems can be used to
aid management decisions related to large software
projects. The next section briefly outlines our reverse
engineering process. Section 3 describes virtual sub-
systems. Section 4 explains how these structures can
be used for risk analysis in project management.

2 The reverse engineering process

The goal of this paper is to describe how one uses
the information produced during the reverse engineer-
ing of a software system, not to detail the reverse en-
gineering process itself. In fact, there are many di-
verse approaches to reverse engineering. Nevertheless,
some background on the reverse engineering process
helps one understand how the generated information
is used. A survey of several state-of-the-art program
understanding techniques is given in [4]. A more de-
tailed description of our reverse engineering environ-
ment can be found in [5].

The process of reverse engineering a subject system
involves two distinct phases [6]:

1Rigi is named after a mountain in central Switzerland.

2Specifically, authorized reverse engineering of one’s own
code. We do not advocate improper reverse engineering of
source code when one does not have the right to do so.

1. The identification of the system’s current compo-
nents and their dependencies.

2. The extraction of system abstractions and design
information.

During the process of reverse engineering, the source
code is not altered, although additional information
about the system is generated. In contrast, the pro-
cess of re-engineering typically consists of a reverse
engineering phase, followed by a forward engineering
or re-implementation phase that alters the subject sys-
tem’s source code.

In our approach, the first phase of the reverse engi-
neering process—the extraction of software artifacts—
is automatic and language-dependent. It essentially
involves parsing of the subject system and storing the
artifacts in a repository. Some of our early work re-
sulted in a graph model for software structures and
a graph editor supporting the model [7]. By software
structure, we mean a collection of artifacts that soft-
ware engineers use to form mental models when de-
signing, implementing, integrating, inspecting, or an-
alyzing software systems. Artifacts include software
components such as procedures, modules, subsystems,
and interfaces; dependencies among components such
as supplier-client, composition, and control-flow rela-
tions; and aftributes such as component type, interface
size, and interconnection strength. The artifacts are
stored in an underlying database specifically designed
to represent graph structures [8]. The Rigi graph edi-
tor allows the users to edit, maintain, and explore the
objects stored in the repository.

Our approach to the second phase is semi-
automatic, and features language-independent subsys-
tem composition methods that generate hierarchies of
subsystems [9]. Subsystem composition is the process
of constructing composite software components out of
building blocks such as variables, procedures, mod-
ules, and subsystems. Hierarchical subsystem struc-
tures are formed by imposing equivalence relations on
the resource-flow graphs of the source code. These
relations embody software engineering principles con-
cerning module interactions such as low coupling and
strong cohesion [10, 11]. We have also formulated
software quality criteria and measures based on exact
interfaces, and have established software engineering
principles to evaluate the resultant subsystem struc-
tures [12, 13, 14]. These measures are not meant to
be absolute; they are used to judge the relative merits
of one system decomposition with respect to another.

The generated structures embody wisual and spa-
tial information that serve as organizational axes for
the exploration and presentation of the composed



subsystem structures. These structures can be aug-
mented with views: textual (and potentially hyperme-
dia) annotations that highlight different aspects of the
software system under investigation [15]. Our semi-
automatic reverse engineering methodology can serve
as a precursor for maintenance and re-engineering
applications, as a front-end for conceptual modeling
and design recovery tools, as a documentation and
program-understanding aid for large software systems,
and as input to project decision-making processes.

3 Virtual subsystems

Traditional imperative, procedural programming
languages provide nesting schemes and/or separate
modules as structuring mechanisms [16]. Nesting
schemes can be used to construct hierarchical struc-
tures, while separate modules can be used to spec-
ify arbitrary structures, as long as the language sup-
ports explicit provision and requirement specifications.
Legacy software systems are often written in languages
that support neither of these simple structuring mech-
anisms. Consequently, any structure they may have
originally had was implicit in the design, and not
necessarily reflected in the code’s physical structure.
The designers may have worked with an architecture
that included modules with implied restrictions and
requirements, but as software evolves these implicit
design decisions may be lost. Maintenance fixes tend
to reduce structure because the reason for the fix is
often not adequately documented before the program-
mer who performed the fix leaves [17]. This has the
effect of increasing the complexity of the software sys-
tem, making maintenance and project management
difficult. While software does not physically deterio-
rate, it may deteriorate logically (in terms of its struc-
tural integrity) [18, 19].

In addition, the cumulative affect of changes made
to a software system tend to produce change patterns
that cross module boundaries. Changes often reflect
customer requirements; these are not necessarily re-
flected by the software system’s architecture. They
may be better expressed in terms of the application
domain [20]. A simple change (from the user’s per-
spective) may involve altering code scattered across
multiple modules, whether or not the module bound-
aries are implicit or explicit.

To restore some semblance of order to such a soft-
ware system, restructuring may be carried out. How-
ever, instead of physically restructuring the code, it
might be better to simply provide multiple abstract
views of the software system as it currently exists.

These views would represent different aspects of the
software system, and provide a dynamic and virtual
structuring mechanism that can be used to organize
the underlying code in a variety of ways. This mech-
anism would provide the ability to specify arbitrary
subsystem decompositions and document them in a
graphical manner. Rigi provides such an environment:
one can decompose a software system into multiple,
virtual subsystems that can be tailored to a variety of
uses and target audiences.

Because these subsystem structures are virtual,
they may be altered at any time. They represent dif-
ferent views of the underlying software system. Rigi’s
underlying semantic network data model [21] provides
a structuring facility based on (k,2)-partite graphs
that enable the reverse engineer to produce multiple
views of arbitrary objects. Figure 1 illustrates two
different views of a single subsystem. Subsystems S1
and S2 share an object from subsystem S3. The arcs
connecting Level; to Level; 11 are composite arcs; they
represent structural relationships (the logical aggre-
gation of components). Arcs within a level are re-
source flow arcs; they represent referential relation-
ships. Each view is a subsystem in itself, but includes
different modules from the subsystem below. Hence,
one might also call these views semantic slices of the
software system.

4 Project management support

As the work on existing application systems con-
sists largely of continued development [22], one way
to view maintenance is as “reuse-oriented software de-
velopment” [23]. There have been several areas iden-
tified as critical to improving software maintenance
and (re)development, and recapture technologies are
one area. Simply put, recapture technologies attempt
to recover some of the original design in an existing
software system by using reverse engineering and vari-
ous program understanding tools. This knowledge can
then be used for further maintenance. With the cost of
software maintenance routinely consuming upwards of
50% of a product’s life-cycle and budget [24], any sav-
ings in maintenance will have a significant impact on
lowering the overall project cost. It can also affect the
quality of the software by reusing tested components,
domain knowledge, and information—something that
is becoming increasingly important in today’s compet-
itive marketplace.

Reverse engineering can benefit many people in-
volved in software production (for example, maintain-
ers, developers, documenters, managers, and testers).
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Subsystem S2
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Figure 1: Multiple views of a subsystem

However, some of the greatest benefits of reverse engi-
neering a software system can be realized by personnel
involved in risk analysis related to project manage-
ment. Risk is defined in Webster’s online dictionary
as “the possibility of loss or injury.” From a software
management perspective, the meaning of loss or injury
is clear: loss of revenue, injury to company and career,
and so on.

Project management and planning at most corpo-
rations is a complicated process. The software systems
which managers are responsible for exist in various life-
cycle stages: new product development, testing, main-
tenance of existing code, and different versions. They
must also manage the human element of the project:
identify the strengths of team members, allocate re-
sources based on various needs (both personal and fi-
nancial), incorporate new personnel into the project,
and compensate for the departure of experienced staff.
Other considerations include funding, experience and
talents of the people available, schedules, impact on
other products and development groups, and market
analysis. All of these things make management tasks
very difficult. This problem is exacerbated when the
complexity of the project, both technical and organiza-
tional, threatens to overwhelm even the most prepared
managerial personnel.

Risk management involves two primary steps [25]:
risk assessment and risk control. Risk assessment
involves the identification, analysis, and prioritiza-
tion of risks, while risk control involves risk manage-
ment planning, resolution, and monitoring. To illus-
trate how the virtual subsystem structures produced
through our reverse engineering process can be used to
address the challenges of risk management, we will use

three representative views of a subject system: yacc; a
parser generator provided with the UNIX?® system [26].
The yacc program consists of 5 modules and roughly
2500 lines of C. It is complex enough to require some
effort to understand, yet simple enough to highlight
some of the advantages to management personnel of
reverse engineering. The views were produced using
Rigi during the reverse engineering of yacc.

4.1 Risk assessment

To assess risks, one must first understand the un-
derlying software system. One way of doing this is to
expose its structure, and to impose alternative views
on this structure. For project management, system
comprehension is typically the most important prereq-
uisite. Managers require a high-level understanding of
the entire system. They may also need in-depth infor-
mation on selected parts of the system to aid them in
making decisions related to project management.

The Rigi system uses views to depict alternative vir-
tual subsystem structures. A view represents a partic-
ular state and display of a constructed software model,
in essence, a snapshot of the reverse engineering envi-
ronment. Different views of the same software model
can be used to address a variety of target audiences
and applications. As a result, the same software sys-
tem can be used by all those involved in the project,
including development, testing, communications, and
management.

For example, Figure 2 represents a high-level
overview of yacc’s architecture and subsystem struc-
ture. Such a view might be used by management to

3UNIX is a trademark of Unix Systems Laboratories, Inc.
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Figure 2: An overview of yacc’s architecture and subsystem structure.

gain an overall understanding of the entire software
system. In the figure, icons represent different arti-
i
N

facts of the software system: the icon

repre-

Utilities

sents the Utilities subsystem, and represents

main

the function main(). Arcs connecting icons represent
resource-flow relationships between artifacts. A thin
line represents a call dependency, a dashed line a data
dependency, and a dotted line a composite (multiple)
dependency. The Arc Hierarchy window displays the
virtual subsystem structure of the components of the
src subsystem (the directory containing the source to
yacc). Each level of the hierarchy represents a level
in the (k,2)-partite graph underlying the model. If
detailed knowledge concerning any particular subsys-
tem 1is required, the user can open any icon to ex-

plore the underlying subsystem, or select any arc be-
tween icons and obtain exact dependency information.
For example, Figure 3 shows the details of the Table
Optimization subsystem, which is part of the Table
Processing subsystem.

An initial decomposition of the subject system can
be automatically constructed based on the existing file
and directory structure. In this case, a file represents
a module, with functions and data types encapsulated
within the module. However, because such a modular-
ization may no longer be the best one (based on cri-
teria such as coupling and cohesion), one can choose
to ignore the existing structure and decompose the
system through bottom-up construction of subsystem
structures from the building blocks extracted from the
source code (for example, functions and data types in
C). The latter approach was taken in the reverse en-
gineering of yacc.

Graphical representations have long been accepted
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as comprehension aids [27]. The Rigi system allows the
software system to be viewed in a variety of ways. This
graphical representation of information can greatly
increase one’s understanding of the software system.
One can work with the code and explore the entire
system on one’s own, using the spatial and visual in-
formation inherent in the views as a guide in under-
standing the software system. As one learns about the
system by examining the source code and the views,
one can record the information by creating new views,
either for oneself or for the whole team. Rigi allows
views to be either local or global, which enables users
to save views of the software system that they find use-
ful for their particular task, yet still be able to look
at different views of the same software system created
by other members of the team. Such a facility is con-
sidered essential in modern hypermedia systems [28].
In this way, detailed views of a particular subsystem
can be constructed by a knowledgable software engi-

neer and used by management when assessing the risks
involving changes to the subsystem.

Rigi also provides textual information (for example,
software quality measures) that augment the graphical
displays. The same mechanism can be used to present
an overview (or a detailed discussion) of some or all
of the software system to other management person-
nel, other departments, or other development teams.
In this way, a high-level understanding of the system
can be disseminated throughout the organization, and
facilitating reuse.

Views can be collected into sequences to form re-
lated sets of documentation; to represent guided tours
for tutorial purposes; to highlight system components
that need to be analyzed and understood when per-
forming specific maintenance or re-engineering tasks;
to summarize change, impact, or performance anal-
yses; and to annotate critical sections with measure-
ments that serve as input to informed decision-making,



such as project priorities or personnel assignments.

For example, visible in Figures 2-4 is the Load
View window. This window contains a scrollable list
of views that may be investigated at the user’s con-
venience. Taken together, these views form an intro-
ductory tutorial describing some of yacc’s operational
design. Such a tutorial might be used as an aid to
program understanding.

The problem is not just the time that is spent
(re)learning the system. The monetary cost of un-
derstanding software is significant, and it is multiplied
every time a new person must learn the system. The
views generated by reverse engineering can greatly re-
duce the overall cost of software by lessening the time
required to understand the system. When program-
mers are assigned particular maintenance tasks, often
they have little knowledge of the overall system design;
they cannot see the forest for the trees. Managers may
have the opposite problem: they may understand the
overall system architecture, but do not know how spe-
cific parts of the system function. A system such as
Rigi addresses this problem by providing views at var-
ious levels of detail and from different perspectives.

4.2 Risk control

Once the risks from a change to a software system
have been assessed, the impact of that change needs
to be minimized. Changing existing components is a
common problem in large, evolving software systems,
and occurs in both the development and maintenance
phases of the software life cycle. Programmers be-
come unwilling to alter a low-level component (also
termed basic interface) because they cannot estimate
the effects of the change on the entire system. In the
development of large systems, it is important to know
what has changed, and what effect the change has on
the system, because those effects can be far reaching
and perhaps unanticipated. Management becomes un-
willing to allow the alteration of central components
because of their potential effects on the rest of the sys-
tem. Changing software systems without sufficient un-
derstanding of the impact is unreliable and untestable.

A graphical representation of the reverse engineered
software system, such as that provided by the Rigi ed-
itor, can provide crucial information for such inves-
tigations. Many development managers still rely on
lines-of-code (LOC) measurements when assessing the
amount of work needed to perform a particular task.
This number is usually not indicative of the actual
amount of work done, and does not encourage reuse,
because a smaller LOC count is interpreted as less
work by many managers. A better estimate of the

work required can be provided by Rigi’s presentation
of affected subsystems and modules. One can select an
arbitrary subset of components from any virtual sub-
system view and perform “what if” scenarios on them.
The impact of a change to the selected components is
displayed, allowing one to decide beforehand whether
or not to carry out the change.

Reverse engineering exposes system structure and
module dependencies. The graphical representation
of the system makes central and fringe components
immediately obvious. One can then tailor activities—
such as testing, monetary and personnel allocation,
and subsequent development efforts—on the compo-
nents desired. Often much effort is spent on testing
nominal or low-risk functions while neglecting to test
high-risk cases. Through virtual subsystems, man-
agers can quickly see where key experienced personnel
should be placed (on the central components), and
where newer team members can work (on fringe com-
ponents). In this way, the optimum pay-off is achieved.

Views such as that shown in Figure 4 might be used
to assign work to personnel in areas of the system best
suited to their knowledge and experience, based on vi-
sual information provided by the spatial relationships
of the central and fringe components, and on the tex-
tual reports indicating subsystem resource intercon-
nections. Experienced programmers can be assured
of working on the more critical aspects of the sys-
tem (those with the most dependencies, or the most
importance), while less experienced ones can work
on more 1solated parts of the system. For example,
the figure indicates that the three functions error(),
aryfil(), and symnam() are the busiest functions in
the Create Tables and Output Tables subsystem.
Projection windows allow the user to project the three-
dimensional view of an arbitrary subset of subsystems
down to a selected depth. When the depth is infi-
nite, the virtual subsystem structures are logically col-
lapsed down to the bottom-most resource flow graph.
A projection of the two chosen subsystems is shown
in the Projection Window, with the busy nodes high-
lighted. The Exact Interface report details which func-
tions depend on these nodes and which virtual sub-
system their clients are part of. The information con-
tained in the report can also be used by the supporting
environment—for example, by the compiler to limit
recompilation.

The same information can also be used to identify
components whose maintenance would improve (or de-
grade) system performance the most. For instance,
enhancement requests from customers can be assessed
based on the amount of work and time needed to add
the code, and the number of subsystems affected. This
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Figure 4: Locating artifacts with maximal impact potential

type of “predictability” is a desirable aspect in soft-
ware evolution [29]. Similarly, the impact analysis can
be used to identify where regression testing must be
done. Many development groups simply run their en-
tire test suite after a change to the system; although
this method is thorough, it is tremendously expensive
and potentially wasteful. Rigi can be used to identify
the affected modules of a change, and managers can
use this information to direct testing efforts. At the
same time, they can be assured that the testing being
done is adequate to cover the enhancement (or bug
fix). Providing customers with periodic maintenance
fixes for a large software system is expensive, so such
fixes should be done right the first time.

5 Summary

As large systems evolve over their product life-
cycle, information concerning the original design is
lost. Even if the system was designed using modern
software engineering principles, such as modulariza-
tion and information hiding, the original design be-
comes compromised during maintenance. Corrective
maintenance and enhancements that seem small soon
resemble patches instead of smoothly extending the
original code. A side effect of these changes is that
system structure degrades. The reverse engineering
facilities provided by Rigi allow one to produce accu-
rate “operational” design documents describing the ar-
chitecture of the software system’s current state—not
that of the original system before numerous mainte-
nance changes were made. These documents are part
of the virtual subsystem structures constructed dur-
ing the reverse engineering process. Partial design re-



covery through reverse engineering facilitates the sal-
vaging of “corporate (domain) knowledge” from earlier
projects. This can greatly improve the quality of new
projects, as well as reduce cycle time from design to
delivery.

Virtual subsystems can be utilized to understand
and describe existing software systems for risk anal-
ysis and project management purposes. Management
personnel can use these structures to support some of
the complex decisions they face, such as resource allo-
cation, personnel placement, impact analysis, system
comprehension, and information recovery.
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