
Towards an Integrated Toolset for Program Understandingy

John Mylopoulos Martin Stanley Kenny Wong Morris Bernstein

Renato De Mori Graham Ewart Kostas Kontogiannis Ettore Merlo

Hausi M�uller Scott Tilley Marijana Tomic

Abstract

This paper describes some early results of a

three-year project to develop an integrated

toolset for program understanding. The imple-

mented integration architecture involves both

a global repository for all tools serviced by the

architecture and a software bus serving commu-

nications among tools.

1 Introduction

Program understanding is the process of devel-

oping mental models of a software system's in-

tended architecture, purpose, and behaviour.

Software engineers spend more time under-

standing existing code than they do designing,

programming, testing, or debugging. More-

over, the need for program understanding is

growing in parallel with the amount of legacy

code currently in use. Not surprisingly, there

have been numerous research e�orts to develop

tools that provide assistance during the under-

standing process. These tools adopt a number

of di�erent approaches, including visualization,

pattern-matching, and knowledge-based tech-

niques. Despite successful results from each of

these approaches, it is clear that no one ap-

proach or tool is su�cient by itself, and that the

software engineer can best be served through a

collection of tools that complement each other

in functionality. This observation raises three

research issues. First, what sort of an architec-

ture can best support an integrated set of tools

yThis work was supported in part by the Natural

Sciences and Engineering Research Council of Canada,

the IBM Software Solutions Toronto Laboratory Centre

for Advanced Studies, the Information Technology Re-

search Centre of Ontario, the University of Victoria, and

McGill University.

for program understanding? Second, what are

the concrete bene�ts of this integration? Third,

how well does an integrated toolset support a

software engineer?

This paper reports on early results of a three-

year project, called RevEngE, whose objec-

tives include the development of an integrated

toolset for program understanding. It o�ers

tools for program visualization, system identi-

�cation and discovery, and supports appropri-

ate program understanding processes. The re-

sults to date include a prototype implementa-

tion of an integrated environment and initial

experimentations with legacy code. RevEngE

is part of an ongoing project on program un-

derstanding, based at the IBM Centre for Ad-

vanced Studies (CAS) [5]. The primary goal

of this larger project [6] has been to apply pro-

gram understanding technologies to improve the

quality of software systems.

In this project, the SQL/DS (Structured

Query Language/Data System) product is used

as the testbed for all technologies under review.

SQL/DS is a relational database management

system, developed by IBM in the 1970s, operat-

ing on IBM's System/370 family of computers

using either VM or VSE, and serving a large

customer base.1 SQL/DS is successful and ma-

ture, but is also evolving to run on new environ-

ments and support a growing functionality. For

these reasons, it was deemed to be an excellent

example of a legacy system.

The SQL/DS system consists of over one

thousand compilable units containing roughly

three million lines of source code written

in PL/AS (Programming Language/Advanced

Systems), an internal IBM language. PL/AS

1SQL/DS, System/370, VM, VSE, and IBM

are trademarks of International Business Machines

Corporation.

is similar in structure and syntax to PL/I, but

has many extensions that make it suitable as a

\deep systems" language. For example, when

necessary, the programmer can mix IBM Sys-

tem/370 Assembler code with PL/AS in a mod-

ule.

Progress in the project has been accom-

plished through two vehicles. The �rst is the

Software Re�nery (also known as REFINE),2

a commercial tool by Reasoning Systems Inc.

that supports a parser for a variety of pro-

gramming languages. The parser's output is a

data structure representation of abstract syntax

trees. Moreover, REFINE o�ers a rich language

where users can de�ne patterns to be matched

against abstract syntax trees of the code under

analysis. This tool was used extensively in ear-

lier phases of the project in order to discover

certain families of defects in the SQL/DS sys-

tem. The second vehicle is the Rigi system, a

research prototype developed at the University

of Victoria to support program analysis and vi-

sualization. All tools under development in Re-

vEngE are based on either REFINE or Rigi, or

both.

Section 2 of this paper describes the integra-

tion architecture proposed for RevEngE, while

Section 3 provides an overview of Rigi, recent

improvements to its functionality, and its appli-

cation to analyzing the structure of SQL/DS.

Section 4 outlines extensions of REFINE to sup-

port pattern matching operations. Section 5

relates this work to other research e�orts, and

Section 6 summarizes the paper.

2 An Integration Architec-

ture

The basic requirement of the overall architec-

ture for the integrated toolset is to support both

data and control integration for a given set of

tools. Data integration is the sharing of data

among a set of tools; control integration is the

ability of tools to notify each other of events,

and to activate other tools when needed. The

design goals for the architecture are that it be

open, modular, and capable of operating either

2Software Re�nery and REFINE are trademarks of

Reasoning Systems Inc.

Local Workspace

Rigi

Local Workspace

Rigi

Local Workspace

REFINE

Machine A

Machine B

Machine C

DATA SERVER
Telos Message Bus
(TMB)

SCHEMA
(Telos Server)

Local Workspace

Rigi

OBJECT BASE
(ObjectStore)

Control Integration Data Integration

Repository
Browser

Figure 1: Control and data integration archi-

tecture

on a single host or over a network. An open sys-

tem architecture was adopted because it makes

the toolset served by the architecture extensi-

ble, while modularity facilitates customization

(or even replacement) of components as needed.

For instance, the underlying message transport

software can be easily changed, if a more desir-

able system is found. It should also be relatively

easy to add new tools.

The integration architecture of the system

consists of two components. The �rst (labeled

\Telos Server" in Figure 1) is responsible for

data integration among tools, and is realized

through a repository based on a single global

schema that can accommodate all data handled

by any one of the integrated tools. The sec-

ond component (labeled \TMB") consists of a

data server which is responsible for communi-

cating information among tools either through

the repository or directly (control integration).

The Telos server is implemented in C++ us-

ing ObjectStore as its persistent storage man-

ager. The global schema is de�ned using

an object-oriented information model (adopted

from Telos [23]) which supports metaclasses,

2

ObjectClass

RigiClass RefineClass

File

attribute
 singleValue: Proposition
 setValue: Proposition
 sequenceValue: SequenceClass

attribute
 rigiAttribute: Proposition

attribute
 refineNonTreeAttribute: Proposition
 refineTreeAttribute: Proposition

rigiAttribute, setValue
 contains: RigiObject

refineNonTreeAttribute, singleValue
 fileCurrentLineNumber: Integer
 fileName: Symbol
 filePathName: String
 fileToFileSpec: FileSpec

refineNonTreeAttribute, setValue
 fileExports: Identifier
 fileImports: IdentifierLink

refineNonTreeAttribute, sequenceValue
 fileGlobals: IdentifierSequence
 fileIdentifiers: RefineObjectSequence
 fileIncludedBy: IncludeStatementSequence
 fileLocals: IdentifierSequence

refineTreeAttribute, sequenceValue
 fileDefinitions: TopLevelDeclarationObjectSequence

instance ofinstance of

is a is a

Metaclass
Level

Class
Level

Figure 2: Portions of the Telos repository

schema

multiple inheritance, and multiple instantia-

tion. In particular, classes are objects and are

instances of metaclasses. For example, an ob-

ject file007 may be an instance of the class

File and RigiModule, reecting that it repre-

sents a �le and part of a Rigi module. Moreover,

attributes are treated as objects and, therefore,

are instances of attribute classes (which in turn

are instances of attribute metaclasses, etc.).

Figure 2 shows a portion of the global schema

that has been de�ned in order to integrate

the tools Rigi and REFINE. At the meta-

class level, the schema includes the meta-

class ObjectClass, which has associated at-

tribute metaclasses singleValue, setValue,

sequenceValue. All instances of this meta-

class can have associated attributes, which

are classi�ed under singleValue, setValue,

sequenceValue, depending on the type of value

they take. ObjectClass has two specializa-

tions, RigiClass and RefineClass. The for-

mer has as instances classes that are manip-

ulated by the Rigi tool, while the latter has

instances that are classes manipulated by the

REFINE tool. As indicated in the �gure,

these metaclasses have attribute metaclasses

that identify attributes used by Rigi and ones

used by REFINE.

At the class level, the class File is de-

�ned as an instance of both RigiClass and

RefineClass. This simply declares that a �le

object may be manipulated by both the Rigi

and REFINE tools. File has many attributes

classi�ed under one or more attribute meta-

classes. For instance, fileCurrentLineNumber

is classi�ed under refineNonTreeAttribute

and singleValue, indicating that this attribute

is single valued and that it is a non-tree at-

tribute used by the REFINE tool. An instance

of File, say file007, can now have associ-

ated attribute valued pairs that are classi�ed

under the attribute classes of File, including

fileCurrentLineNumber, contains, etc.

The use of metaclasses for objects as well as

attributes makes it possible to accommodate

new tools as well as new types of information.

The treatment of attributes as objects facili-

tates the partitioning of repository contents to

suit the tools being accommodated and their

users. For instance, a user of REFINE may

want to load into the REFINE workspace all

�le objects with their associated REFINE at-

tributes (but not their Rigi attributes). Ex-

pressing such a query in Telos is simple, pre-

cisely because attributes are objects.

The global schema that has been imple-

mented so far can accommodate the two tools

Rigi and REFINE used during program iden-

ti�cation [3], where a given program is parsed

and analyzed syntactically. It also accommo-

dates them during design discovery, where var-

ious abstractions are discovered through pat-

tern matching. An extension to the schema,

planned for the second year of the project, will

accommodate requirements speci�cations, pro-

cess models, and domain knowledge, as well as

the actual patterns used for their discovery.

The data server, called Telos Message Bus

(TMB), is the kernel of the support system for

tool interconnection and control integration. It

is implemented in C++ using the software bus

MBus [7] as the transportation mechanism. We

chose MBus for the project, rather than use a

3

commercial product, primarily because it gives

us a small and simple system upon which we can

build a message transport layer tailored speci�-

cally to the project's requirements. Its capabili-

ties include reliable message transfer with selec-

tive broadcasting, and a simple message typing

scheme.

The design goals of the TMB include exten-

sibility, in the sense that a tool client must be

able to dynamically inform the system that it

can handle a new kind of request. For exam-

ple, when REFINE implements a new complex-

ity measure, it would register this capability so

that other tools can make use of it. In addi-

tion, the TMB is designed to be extensible in

the sense that it is a simple matter to add new

tools to the architecture. A new tool would be

added as another tool class to the currently ex-

isting classes for Rigi, REFINE, and the Telos

Server. Instances of speci�c tools or users in the

environment are uniquely identi�ed by a com-

bination of the login name, tool class, host ID,

and process number.

Another important requirement is that the

TMB supports point-to-point as well as broad-

cast communication. Tools can specify a partic-

ular domain of interest|the kinds of messages

that it is interested in. A domain is a tuple

consisting of a context (e.g., analysis update),

a tool class, and a combination of login name,

host ID, and process number. Domains also al-

low senders to specify particular receiver(s) of

a message. The registry of contexts is expected

to evolve over the course of the project.

E�cient transmission of bulk data is deemed

to be critical, since that is the intended modus

operandi for the integration architecture. That

is, the repository is currently not optimized for

queries of just single objects. Finally, the data

server has been designed so that it lays the

groundwork for an access control layer and a

policy layer for implementing access control pro-

tocols and program understanding processes.

The TMB o�ers message passing using mes-

sage objects, with client facilities for message

creation, deletion, and archiving. Data is sent

through a TMB message by creating a network

object (a transportable representation of a Te-

los object) and sending it to another client on

the TMB. For example, the REFINE tool might

parse a program's source code, producing an ab-

stract syntax tree representation of the program

and send this tree via a set of network objects

encapsulated in a TMB message to the Telos

Server (simply another client on the TMB) for

insertion into the repository. Then later on, the

Rigi tool can request a certain subset of the ob-

jects previously created by REFINE and can

get them through a TMB message containing

the appropriate network objects from the Telos

Server. Later on, the Rigi tool might request

(using a TMB message) that the REFINE tool

perform some additional analysis of the source

code and that it report the results directly to

Rigi. In this scenario, the REFINE tool sends

a set of network objects in a TMB message to

Rigi. Note that although the tools in this lat-

ter example are not using the repository at all,

they are using the repository's global schema to

communicate with each other.

3 The Rigi Tool

The basic function of the Rigi tool [18] is to

discover abstractions from software representa-

tions and present them in a meaningful way

to software engineers, thereby assisting their

understanding of the subject system. Presen-

tations of information in Rigi are graphical,

and accommodate summarizing, querying, rep-

resenting, visualizing, and evaluating system

structure for large, evolving software systems.

Rigi encompasses a collection of research re-

sults integrated into a number of components,

including a parsing subsystem, a distributed,

multi-user workspace, and an interactive graph

editor [21]. Rigi's representation for software

structure is based on (k,2)-partite graphs [19],

thereby making the analysis of program struc-

ture algorithmically tractable. In addition, [22]

proposes a reverse engineering methodology,

while [20] de�nes measures for evaluating the

quality of structural abstractions. Also, [28]

presents a documentation strategy using up-

to-date views, and [29] o�ers an end-user pro-

grammable approach to extending the system's

functionality.

The SQL/DS code was a useful testing

ground for the Rigi approach, and led to a dra-

matic change to the underlying philosophy that

4

a semi-automatic reverse engineering environ-

ment is better than a fully automatic one. This

is because human cognitive abilities are still

much more powerful and exible than �xed al-

gorithms. However, many of the operations per-

formed during the initial decomposition of the

SQL/DS code were repetitive and tedious. The

analyst would still be in charge, but the process

itself could be more automated. These obser-

vations led us to support end-user programma-

bility of the Rigi editor through a scripting lan-

guage. Users can now write scripts to increase

the exibility of the editor. Complex decompo-

sition or layout tasks are automated for more

consistency. User interfaces and interactions

may be tailored as desired. The editor is ex-

tensible, using the scripting language to trans-

parently integrate existing capabilities.

Previously, the user interface and kernel of

the editor were tightly coupled. We added a

transparent middle layer to allow scripting of

all editor operations. Instead of writing yet an-

other command language, we de�ned the Rigi

Command Language (RCL) using Tcl [24]. Tcl

provides a powerful, extendible core language

and was speci�cally designed to be embedded

into applications. Since the implementation

is interpreted, there is no need to recompile

an application|very important to ease experi-

mentation during program understanding tasks.

Moreover, scripts are easy to write and are of-

ten fairly short. Tcl is application-independent

and provides two interfaces: a textual one to

users who issue Tcl commands, and a procedu-

ral one to the host application. Using the pro-

cedural interface, Rigi implements and registers

new commands that are indistinguishable from

built-in Tcl commands. We added commands to

access the internal Rigi state, such as the can-

vas size and graph model, as well as commands

to trigger the built-in Rigi operations (also ac-

cessible through pull-down and pop-up menus).

RCL scripts have been written in terms of these

commands to provide additional algorithms for

o�-line decomposition, analysis, and visualiza-

tion.

Integration is one particularly important ben-

e�t of scripting. Tcl supports inter-application

communication between Tcl-based tools as a

possible avenue for integration. As well, Tcl

provides primitives to access and coordinate

external tools, even to those interactive tools

that were not written with scripting control in

mind. Thus, the toolset available to the analyst

is e�ectively unlimited. For example, visualiz-

ing dependencies is a common operation dur-

ing program understanding. Scripts were writ-

ten to access external tools for spring [12] and

Sugiyama [27] graph layout. The following is

an RCL script for applying a spring layout al-

gorithm to the graph in a Rigi window. The reg-

istered names of the new commands are layout

and spring.

call a graph layout program on the subgraph

in the current window and along the given

arc type

proc layout { program {window 0} {arctype any} } {

if {$window == 0} {

no window given; get current window

set window [get_window_id]

}

compute names of temporary files

set graphin [format "/tmp/%s-in" $window]

set graphout [format "/tmp/%s-out" $window]

write subgraph, call layout program,

read result

writeGEF $graphin $window $arctype

exec $program < $graphin.gef > $graphout.gef

readGEF $graphout $window

delete temporary files

exec rm $graphin.gef

exec rm $graphout.gef

}

run spring layout algorithm on the subgraph

in the current window and along the given

arc type

proc spring { {window 0} {arctype any} } {

if {$window == 0} {

no window given; get current window

set window [get_window_id]

}

if {[is_connected $window $arctype]} {

subgraph is connected;

call spring layout

layout gel-spring $window $arctype

} else {

open_message_panel "Graph not connected"

}

}

The spring script uses the layout command.

The layout script uses the writeGEF script

command to convert the subgraph of the Rigi

graph model portrayed in the active window to

5

a �le conforming to the GEF format expected

by a GraphEd tool called gel spring [15]. The

layout script then executes gel spring and

reads the resulting new layout back into the edi-

tor using the readGEF command (which also ad-

justs the positions of nodes in the graph model).

The resulting layout from spring is based on

physical properties of attraction and repulsion,

and may help ease the identi�cation of candi-

date subsystems.

The addition of a scripting language migrates

the Rigi editor closer to a highly exible visu-

alization engine. The editor is a reusable com-

ponent that can be adapted to new application

domains (and, hence, is domain retargetable).

This adaptability is important for presenting

the varied program understanding analyses ex-

pected in the RevEngE project, such as clone

detection, data bindings, defect detection, and

subsystem structure identi�cation in a visually

integrated way. Moreover, to be better acces-

sible to other tools, the format for the tuple

streams through which the current Rigi compo-

nents communicate was standardized and bet-

ter de�ned. The editor was also decoupled from

the existing workspace to support the input of

these tuple streams as at �les. This capabil-

ity provides another avenue of data interchange

with other tools.

Presently, the Rigi parser supports C, C++,

COBOL, LaTEX, and, to a certain extent,

PL/AS. One goal was to extend the PL/AS

part by analyzing data types, data dependen-

cies, structures, call dependencies, and pointers

(references). Our original intent was to trans-

form PL/AS source code into something very

similar to the C language so that the Rigi C

parser would be able to analyse it. Instead,

we decided to take advantage of Rigi's ability

to read a stream of tuples representing rela-

tions and objects. These tuple streams could

be generated from compiler listings produced

by PL/AS, where information about program

structure is presented in a more regular format

than the source code itself. AWK [1], a well-

known UNIX �le-processing tool, seemed suit-

able, and we wrote AWK scripts to generate the

required tuples from a compiler listing. For ex-

ample:

DATA file-name data-name

CALL file-name procedure-name

PROC file-name procedure-name

STRUCT file-name struct-name

MEMBER struct-name member-name

DATA This tuple represents the declaration of a

named data item in a �le.

CALL This tuple is created for each call in a

module to a procedure that is not de�ned

in the same module.

PROC This tuple is created for each call in a

module to an externally visible procedure

that is de�ned in the same module. No tu-

ples were created for calls to PL/AS built-

in functions, which are usually speci�c se-

quences of 370 assembler instructions.

STRUCT This tuple is created for each com-

pound data type (array, record, etc.) found

in a source �le.

MEMBER This tuple is created for each member

of a structure. The naming conventions

used in SQL/DS allow the assumption that

di�erent instances of a structure name ac-

tually represent the same structure. These

occurrences are rare.

These tuples were loaded into Rigi's reposi-

tory to produce a visual representation of the

SQL/DS system. Figure 3 depicts a spring lay-

out of a (logical) SQL/DS subsystem (the rou-

tines associated with adding a foreign key to

the database, within the physical component

ARIXI). In this logical subsystem, three mod-

ules (ARIXIGK, ARIXIAP, ARIXIUK) are shown as

well as some of the structures and data variables

they access. A fourth module (ARIXIAF) is �l-

tered from the view for clarity. A spring layout

easily shows the data being shared by the mod-

ules. Nevertheless, deducing such a logical sub-

system in SQL/DS at this level of abstraction

(neither too high nor too low) is very di�cult

because of the structural complexity of the soft-

ware. Thus, there is a need to integrate with

and access alternative clustering methods.

6

Figure 3: Spring layout of an SQL/DS subsystem

4 Pattern Matching in

REFINE

Pattern matching is involved in every major as-

pect of program understanding. McGill's con-

tribution to the project has focused on integrat-

ing novel pattern-matching algorithms for pro-

gram analysis and design discovery into the en-

vironment. Adopted is a exible, generalized,

pattern-matching paradigm that does not limit

maintainers to a �xed plan library [16]. Of in-

terest are algorithms to identify useful patterns

e�ciently and visualize pattern matches e�ec-

tively.

As software is maintained, patches of code

tend to be introduced that form hidden rela-

tionships in the program. Subsystem cluster-

ing attempts to group non-contiguous program

fragments that should be considered together.

Two fragments should be clustered together if

and only if one fragment has, or is likely to

have, a signi�cant e�ect on the behaviour of the

other. To date, we have considered structural

elements that indicate the exchange of program

resources, such as data bindings and common

references [17]. A data binding is a triplet con-

sisting of two program fragments and a variable

where the variable is set in one fragment and

used in the other. A common reference is where

two or more fragments use or update a partic-

ular variable.

We used REFINE to implement a prototype

clustering algorithm that considers the num-

ber of common references among arbitrary sets

of fragments and a clustering algorithm based

on data bindings on the set of variables in the

software. The program representation scheme

is an object-oriented annotated abstract syn-

tax tree; a grammar is used for parsing and

a domain model is de�ned to specify the ob-

ject hierarchies. During analysis, the tree is an-

notated with information on system structure,

data ow, and links to informal information (for

example, local variables, global variables, func-

tions call, and aliasing).

The results of the analysis can be displayed in

tabular form within REFINE or passed to the

repository for display by Rigi. Figure 4 presents

the tables of clusters based on data bindings and

common references that REFINE generated for

7

Figure 4: REFINE data bindings and common references tables

a game program written in C.

The availability of the clustering algorithms

assist the task of subsystem composition in Rigi.

Figure 5 depicts the original resource ow graph

that Rigi's parsing subsystem extracted from

the same source code. There are icons for the

functions and a data type called player; the

arcs represent function calls or data accesses.

REFINE can augment this information by ex-

tracting the variables as well, computing clus-

ters, and loading this analysis into the reposi-

tory. The process of subsystem composition in

Rigi can subsequently be guided by these clus-

ters. A view of clustering based on data bind-

ings is shown in Figure 6. The middle column

are variables extracted by REFINE and the left

and right columns represent clusters of func-

tions that set or use, respectively, those vari-

ables.

The static analysis is non-trivial because of

the aliasing problem in languages such as C and

PL/AS. The current implementation of the clus-

tering algorithms cannot detect relationships

due to aliasing. Instead, it examines global vari-

ables and parameters of functions. This work is

being extended to integrate aliasing information

from McGill's Compiler Architecture Testbed

(McCAT) [14]. McCAT is a research compiler

for C, designed to test techniques for generating

optimized code on modern RISC and parallel

architectures. One key element of the compiler

is its approach for interprocedural analysis us-

ing \points-to" information [11].

5 Related Work

SoftBench from Hewlett Packard is a platform

that integrates tools via a mechanism intro-

duced in the Field programming environment

8

Figure 5: Rigi resource ow graph

[25]. This mechanism allows tools to interact

by sending messages to a message server that

selectively broadcasts them to those tools that

have previously registered a need to be noti�ed.

For close integration with other tools, a new tool

must provide a programmatic message-based in-

terface in addition to its user interface; it must

support request messages for services it provides

and send noti�cation messages announcing the

actions it has performed.

PCTE Workbench from VISTA Technologies

[2] is a toolkit for constructing hypermedia-

based environments and applications. It is

based on the Portable Common Tool Environ-

ment (PCTE), which provides an extensible

structure for tool integration and the construc-

tion of software development environments [4].

Data integration is based on the PCTE Ob-

ject Management System [13], which supports a

hypertext-like data model. Control integration

is provided by broadcast messaging built around

an interpreter for an object-oriented, Lisp-based

scripting language.

Software through Pictures (StP)3 [30] from

Interactive Development Environments is an in-

tegrated software-engineering environment that

provides an open architecture, data sharing

through a central repository, a common graph-

ical editor, and customization through a script-

3Software through Pictures is a registered trademark

of Interactive Development Environments

Figure 6: Clustering based on data bindings

ing language. The editor is tailorable to

a particular software engineering methodology

through rule �les, and provides presentation in-

tegration by showing a similar and consistent

user interface for all methodologies structured

or object-oriented.

Work on software repositories includes [9, 10],

which discusses a knowledge representation sys-

tem based on the language CLASSIC, which is

used to describe software objects. CLASSIC

is also used by [26] as the representation lan-

guage for a communications software repository.

This repository includes information about the

software code, its intended function, and dis-

covered relationships between them. Finally,

[8] presents a similar system based on Telos,

which stores requirements, design, and imple-

mentation information about information sys-

tems, and is intended for reuse-oriented appli-

cation development.

6 Summary

This paper described an implementation for in-

tegrating tools developed to support program

understanding activities. The strategy is based

on a software repository using a rich and ex-

tensible global schema to integrate the types of

information handled by a given toolset. The ar-

chitecture supports a software bus intended to

9

accommodate communication among tools and

the repository. In addition, the paper reports

on work with two existing tools, Rigi and RE-

FINE, so that they can be interfaced with the

architecture. Finally, it reports on recent work

within the project on tools for program analysis

and design recovery.

We are only beginning to discover the bene-

�ts of integration. For example, Rigi has a much

more exible and robust user interface for visu-

alization than REFINE, but it lacks REFINE's

strengths for detailed syntactic analysis on the

syntax tree of a program. Trying to implement

these capabilities for detailed analysis in the

scripting language of Rigi would be redundant

and perhaps even inadequate. Cloning analy-

sis is another good example where REFINE can

perform the analysis and Rigi can visually high-

light the clones using customizable icons, color

schemes, and placement. An integration archi-

tecture with a global schema is needed to bring

tools with such varied strengths and capabilities

together to form a uni�ed program understand-

ing toolset|uni�ed in terms of data and control

integration.

About the Authors

John Mylopoulos Department of Computer

Science, University of Toronto, 6 King's Col-

lege Road, Toronto, Ontario, Canada M5S 1A4.

jm@ai.utoronto.ca. Dr. Mylopoulos is a pro-

fessor of computer science at the University of

Toronto. He received his Ph.D. degree from

Princeton University in 1970. His research in-

terests include knowledge representation and

conceptual modelling, covering languages, im-

plementation techniques for large knowledge

bases, and the application of knowledge bases

to software repositories. He is currently leading

a number of research projects and is principal

investigator of both a national and a provin-

cial Centre of Excellence for Information Tech-

nology. His publication list includes more than

120 refereed journal and conference proceedings

papers and three edited books. He is the recipi-

ent of the �rst ever Outstanding Services Award

given out by the Canadian AI Society (1992),

and also a co-recipient of a best paper award at

the 16th International Conference on Software

Engineering.

Martin Stanley Department of Computer

Science, University of Toronto, 6 King's Col-

lege Road, Toronto, Ontario, Canada M5S 1A4.

mts@ai.utoronto.ca. Mr. Stanley received his

M.Sc. degree in computer science from the Uni-

versity of Toronto in 1987. His research inter-

ests include knowledge representation and con-

ceptual modeling, with particular application to

the building of software repositories. He is cur-

rently a research associate in the Department of

Computer Science at the University of Toronto,

with primary responsibility for the Toronto por-

tion of the RevEngE project.

Kenny Wong Department of Computer

Science, University of Victoria, P.O. Box

3055, Victoria, BC, Canada V8W 3P6.

kenw@csr.uvic.ca. Mr. Wong is a Ph.D. can-

didate in the Department of Computer Science

at the University of Victoria. He worked in the

program understanding project while at CAS

during the summer of 1993 and 1994. His re-

search interests include program understand-

ing, runtime analysis, user interfaces, object-

oriented programming, and software design. He

is a member of the ACM, USENIX, and the

Planetary Society.

Morris Bernstein School of Computer

Science, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. zaphod@cs.mcgill.ca. Mr. Bern-

stein received his B.Sc. and M.Sc degrees

from McGill University. His research inter-

ests include software development, program un-

derstanding, compiler design, and application-

domain languages. He is currently a research

assistant with primary responsibility for the

McGill portion of the RevEngE project.

Renato De Mori School of Computer

Science, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. demori@cs.mcgill.ca. Dr. De Mori

received a doctorate degree in Electronic En-

gineering from Politecnico di Torino, Italy, in

1967. Since 1986, he has been a professor and

the director of the School of Computer Sci-

ence at McGill University. In 1991, he became

an associate of the Canadian Institute for Ad-

vanced Research and project leader of the In-

stitute for Robotics and Intelligent Systems, a

10

Canadian Centre of Excellence. His current

research interests are stochastic parsing tech-

niques, automatic speech understanding, con-

nectionist models, and reverse engineering. He

is the author of many publications in the areas

of computer systems, pattern recognition, arti-

�cial intelligence, and connectionist models. He

is on the board of the following international

journals: the IEEE Transactions on Pattern

Analysis and Machine Intelligence, Signal Pro-

cessing, Speech Communication, Pattern Recog-

nition Letters, Computer Speech, and Language

and Computational Intelligence. He is a fellow

of the IEEE Computer Society.

Graham Ewart Centre for Advanced Stud-

ies, IBM Software Solutions Toronto Labora-

tory, 844 Don Mills, North York, ON, Canada

M3C 1V7. ewart@vnet.ibm.com. Mr. Ewart is

a senior development analyst of the IBM Soft-

ware Solutions Toronto Laboratory and is cur-

rently the principal investigator for the program

understanding project at CAS. Prior to join-

ing CAS, he was the lead architect for the IBM

C/370 family of compilers and runtimes. His re-

search interests include software maintenance,

program understanding, document understand-

ing, and reverse engineering.

Kostas Kontogiannis School of Computer

Science, McGill University, 3480 University

Street, Room 318, Montr�eal, Qu�ebec, Canada

H3A 2A7. kostas@binkley.cs.mcgill.ca.

Mr. Kontogiannis received a B.Sc degree in

Mathematics from the University of Patras,

Greece, and an M.Sc degree in Arti�cial Intel-

ligence from Katholieke Universiteit Leuven in

Belgium. Currently, he is a Ph.D candidate in

the School of Computer Science at McGill Uni-

versity. His interests include plan localization

algorithms, software metrics, arti�cial intelli-

gence, and expert systems.

Ettore Merlo D�epartement

de G�enie �Electrique (DGEGI), �Ecole Polytech-

nique de Montr�eal, C.P. 6079, Succ. Cen-

tre Ville, Montr�eal, Qu�ebec, Canada H3C 3A7.

merlo@rgl.polymtl.ca. Dr. Merlo graduated

from the University of Turin, Italy, in 1983 and

obtained a Ph.D. degree in computer science

from McGill University in 1989. From 1989 un-

til 1993, he was the lead researcher of the soft-

ware engineering group at the Computer Re-

search Institute of Montreal. He is currently an

assistant professor of computer engineering at
�Ecole Polytechnique de Montr�eal, where his re-

search interests include software re-engineering,

software analysis, and arti�cial intelligence. He

is a member of IEEE Computer Society.

Hausi A. M�uller Department of Com-

puter Science, University of Victoria, P.O.

Box 3055, Victoria, BC, Canada V8W 3P6.

hausi@csr.uvic.ca. Dr. M�uller is an asso-

ciate professor in the Department of Computer

Science at the University of Victoria, where he

has been since 1986. He received his Ph.D. in

computer science from Rice University in 1986.

From mid 1992 to mid 1993, he was on sabbati-

cal at CAS, working in the program understand-

ing project. His research interests include soft-

ware engineering, software analysis, reverse en-

gineering, re-engineering, programming-in-the-

large, software metrics, and computational ge-

ometry. He is currently a Program Co-Chair of

the International Conference on Software Main-

tenance (ICSM '94) in Victoria and the Interna-

tional Workshop on Computer Aided Software

Engineering (CASE '95) in Toronto. He is a

member of the editorial board of IEEE Trans-

actions on Software Engineering.

Scott R. Tilley Department of Com-

puter Science, University of Victoria, P.O.

Box 3055, Victoria, BC, Canada V8W 3P6.

stilley@csr.uvic.ca. Mr. Tilley is currently

on leave from the IBM Software Solutions

Toronto Laboratory, and is a Ph.D. candidate

in the Department of Computer Science at the

University of Victoria. His �rst book on home

computing was published in 1993. His research

interests include end-user programming, hyper-

text, program understanding, reverse engineer-

ing, and user interfaces. He is a member of the

ACM and the IEEE Computer Society.

Marijana Tomic Centre for Advanced Stud-

ies, IBM Software Solutions Toronto Labora-

tory, 844 Don Mills, North York, ON, Canada

M3C 1V7. mtomic@vnet.ibm.com. Mrs. Tomic

is a post-doctoral student from the University of

Victoria, working in the program understanding

project at CAS. Her research interests include

software engineering in general, and software

maintenance, program understanding, reverse

engineering, re-engineering, and re-structuring

11

in particular.

References

[1] Aho, A., Kernighan, B., and Weinberger, P.

The AWK Programming Language. Addison-

Wesley, 1988.

[2] Arora, A.K., Hurst, D.W., and Ferrans, J.C.

\Building Diverse Environments with PCTE

Workbench", Proc. PCTE '93, 1993.

[3] Arnold, R.S. \Tutorial on Software Re-

Engineering", IEEE International Conference

on Software Maintenance, (ICSM '90), San

Diego, November 1990.

[4] Boudier, G., Gallo, F., Minot, R., and

Thomas, I. \An Overview of PCTE and

PCTE+", ACM SIGSOFT Software Engineer-

ing Notes, 13(5), February 1989.

[5] Buss, E. and Henshaw, J. \Experiences in Pro-

gram Understanding", Proc. CASCON '92,

Toronto, November 1992.

[6] Buss, E. et al. \Investigating Reverse Engi-

neering Technologies: The CAS Program Un-

derstanding Project", IBM Systems Journal,

33(3), 1994.

[7] Carroll, A. ConversationBuilder: A Collabo-

rative Erector Set. Ph.D. Thesis, University of

Illinois, 1993.

[8] Constantopoulos, P., Jarke, M., Mylopoulos,

J., and Vassiliou, Y. \The Software Informa-

tion Base: A Server for Reuse", The VLDB

Journal (to appear).

[9] Devanbu, P., Selfridge, P., Ballard, B., and

Brachman, R.P. \Steps Towards a Knowledge-

Based Software Information System", Proc.

International Joint Conference on Arti�cial In-

telligence, Detroit, August 1989.

[10] Devanbu, P., Brachman, R.P., Selfridge, P.,

and Ballard, B. \A Classi�cation-Based Soft-

ware Information System", Proc. IEEE Inter-

national Conference on Software Engineering,

(ICSE 12), May 1990.

[11] Emami, M., Ghiya, R., and Hendren, L.J.

\Context-Sensitive Interprocedural Points-to

Analysis in the Presence of Function Pointers",

Proc. Conference on Programming Language

Design and Implementation, (SIGPLAN '94),

Orlando, June 1994.

[12] Fruchtermann, T. and Reingold, E. \Graph

Drawing by Force-Directed Placement", Tech-

nical Report UIUC CDS-R-90-1609, Depart-

ment of Computer Science, University of Illi-

nois at Urbana-Champaign, 1990.

[13] Gallo, F., Minot, R., and Thomas, M.I.

\The Object Management System of PCTE

as a Software Engineering Database Manage-

ment System", Proc. Second ACM Sympo-

sium on Practical Software Development Envi-

ronments (SIGSOFT '86), Palo Alta, Decem-

ber 9{11, 1986.

[14] Hendren, L.J., Donawa, C., Emami, M., Gao,

G.R., Justiani, and Sridharan, B. \Design-

ing the McCAT Compiler Based on a Family

of Structured Intermediate Representations",

ACAPS Technical Memo 46, School of Com-

puter Science, McGill University, Montreal,

1992.

[15] Himsolt, M. \GraphEd: The Design and Im-

plementation of a Graph Editor", GraphEd

Distribution Kit, 1993.

[16] Kontogiannis, K.A., De Mori, R., Bernstein,

M. and Merlo, E. \Localization of Design Con-

cepts in Legacy Systems", Proc. IEEE Inter-

national Conference on Software Maintenance,

(ICSM '94), Victoria, BC, September 19{23,

1994 (to appear).

[17] Kontogiannis, K.A., Tilley, S.R., De Mori, R.

and M�uller, H.A. \User-Assisted Design Re-

covery for Legacy Software Systems", Work-

shop on Software Engineering and Arti�cial

Intelligence in IEEE International Conference

on Software Engineering, (ICSE 16), Sorrento,

Italy, May 16{17, 1994.

[18] M�uller, H.A. Rigi|A Model for Software Sys-

tem Construction, Integration, and Evolu-

tion Based on Module Interface Speci�cations,

Ph.D. Thesis, Rice University, August 1986.

[19] M�uller, H.A. \(k,2)-Partite Graphs as a Struc-

tural Basis for the Construction of Hyperme-

dia Applications", Technical Report DCS-119-

IR, University of Victoria, June 1989.

[20] M�uller, H.A. and Corrie, B.D. \Measuring the

Quality of Subsystem Structures". Technical

Report DCS-193-IR, University of Victoria,

November 1991.

[21] M�uller, H.A., Tilley, S.R., Orgun, M.A., Cor-

rie, B.D., and Madhavji, N.H. \A Reverse

12

Engineering Environment Based on Spatial

and Visual Software Interconnection Models",

ACM SIGSOFT Software Engineering Notes,

17(5), December 1992.

[22] M�uller, H.A., Orgun, M.A., Tilley, S.R., and

Uhl, J.S. \A Reverse Engineering Approach to

Subsystem Structure Identi�cation", Journal

of Software Maintenance: Research and Prac-

tice, 5(4), December 1993.

[23] Mylopoulos, J., Borgida, A., Jarke, M., and

Koubarakis, M. \Telos: Representing Knowl-

edge About Information Systems", ACM

Transactions on Information Systems, 8(4),

October 1990.

[24] Ousterhout, J.K. An Introduction to Tcl and

Tk. Addison-Wesley, 1994.

[25] Reiss, S.P. \Interacting with FIELD",

Software|Practice and Experience, 20, June

1990.

[26] Selfridge, P. \Knowledge Representation Sup-

port for a Software Information System",

Proc. Seventh IEEE Conference on AI Appli-

cations, February 1991.

[27] Sugiyama, K., Tagawa, S., and Toda, M.

\Methods for Visual Understanding of Hier-

archical Systems", IEEE Transactions on Sys-

tems, Man, and Cybernetics, 11(4), 1981.

[28] Tilley, S.R., M�uller, H.A., and Orgun, M.A.

\Documenting Software Systems with Views",

Proc. 10th International Conference on Sys-

tems Documentation, (SIGDOC '92), Ottawa,

October 13{16, 1992).

[29] Tilley, S.R., M�uller, H.A., Whitney, M.J., and

Wong, K. \Domain-Retargetable Reverse En-

gineering", Proc. 1993 International Confer-

ence on Software Maintenance, (ICSM '93),

Montreal, September 27{30, 1993.

[30] Wasserman, A.I. and Pircher, P.A. \A Graph-

ical, Extensible Integrated Environment for

Software Development", Proc. Second ACM

Symposium on Practical Software Develop-

ment Environments (SIGSOFT '86), Palo

Alta, December 9{11, 1986.

13

