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Abstract

There is a significant difference between docu-
menting large programs and documenting small
ones. By large programs we mean on the or-
der of 1,000,000 lines, usually written by many
different people over a long period of time.
Most software documentation may be termed
documenting-in-the-small, since 1t typically de-
scribes the program at the algorithm and data
structure level. To understand large legacy sys-
tems, one needs documenting-in-the-large: doc-
umentation describing the high-level structural
aspects of the software system’s architecture
from multiple perspectives.
lines an approach to supporting software evo-
lution through documenting-in-the-large. The
approach is based on a flexible reverse engineer-
ing process which uses wvirtual subsystem strat-
ifications to represent multiple abstract views
of a software system.

This paper out-
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1 Introduction

There are significant differences between soft-
ware systems of 1,000 lines, of 100,000 lines, and
of 1,000,000 lines. One of the most important
of these differences is the use of documenta-
tion as an aid in program understanding. Most
software documentation is documenting-in-the-
small since it typically describes the program
at the algorithm and data structure level. For
large legacy systems, an understanding of the
structural aspects of the system’s architecture
is more important than any single algorithmic
component.

This is especially true for software engi-
neers and technical managers responsible for
the maintenance of such systems. The doc-
umentation that exists for these systems typ-
ically describes isolated parts of the system;
it does not describe the overall architecture.
Moreover, the documentation is often scattered
throughout the system and on different media.
It is left to maintenance personnel to explore
the low-level source code and piece together
disparate information to form high-level struc-
ture models. Manually creating one such archi-
tectural structure document is a difficult task;
creating multiple documents that describe the
architecture from multiple viewpoints would
seem unlikely. Yet it is exactly this sort of
documenting-in-the-large that is needed to ex-
pose the structure of large software systems.
One way of producing such documentation for
an existing software system is through reverse
ENGgineering.

Reverse engineering is the process of extract-
ing system abstractions and design information
from existing software systems. This informa-
tion can then be used for subsequent develop-



ment, maintenance, re-engineering, and project
management purposes. The process involves
the identification of software artifacts in the
subject system, and the organizing of these arti-
facts to form more abstract system representa-
tions and reduce complexity. Through reverse
engineering, the overall structure of the subject
system can be determined and some of its ar-
chitectural design information recovered.

Software structure refers to a collection of ar-
tifacts that software engineers use to form men-
tal models when designing, documenting, im-
plementing, integrating, inspecting, or analyz-
ing software systems. Artifacts include software
components such as procedures, modules, sub-
systems, and interfaces; dependencies among
components such as supplier-client, composi-
tion, and control-flow relations; and attributes
such as component type, interface size, and in-
terconnection strength. The structure of the
system 1s the organization and interaction of
these artifacts [1].

This paper comments on the deficiencies in
traditional documentation techniques and de-
scribes an approach to supporting software evo-
lution through documenting software structure
via reverse engineering. In particular, 1t focuses
on how the approach facilitates understanding
the structure of large software systems through
the reconstruction and redocumentation of the
subject system’s operational architecture. The
structure is created semi-automatically by a
software engineer aided by a flexible reverse en-
gineering environment, is modeled using a va-
riety of software interconnection models, and 1s
represented by wvirtual subsystem stratifications:
multiple abstract views of the software system.

The next section discusses the challenges
presented by software evolution. Section 3 out-
lines the shortcomings of traditional documen-
tation techniques when applied to legacy soft-
ware systems. Section 4 presents an approach
to documenting software structure. Finally,
Section b summarizes the paper.

2 Software evolution

The primary business of software used to be
new development; now it is maintenance [2].
This shift was inevitable: the software profes-

sion has reached a turning point, one where
more people are employed to maintain exist-
ing applications than to develop new systems
from scratch. The key phrase is “from scratch.”
Very little development is done from scratch in
other engineering disciplines; so-called new de-
velopment 1s done by building upon the results
of others using reusable building-blocks (for ex-
ample, integrated circuits in electronics).

The increasingly high profile of software
maintenance has led to software evolution be-
ing identified as a central software engineer-
ing problem [3]. Yet software evolution re-
mains a difficult aspect of the software pro-
cess. Even the term itself is somewhat ill de-
fined. Traditional approaches to the software
process have placed too much emphasis on the
artificial distinction between development and
maintenance. Evolution begins early in the de-
velopment process, and the distinction between
development and maintenance should be aban-
doned in favor of an evolutionary process [4].

The implication of this shift in focus, from
developing new systems to maintaining and up-
grading existing ones, means one must be able
to understand the design of the system before
one can build on top of it. While design may
be difficult [5], reconstructing and effectively
(re)documenting the design of existing systems
is even more difficult. Recognizing abstractions
in real-world systems is as crucial as designing
adequate abstractions for new systems.

The hardest task of maintenance is under-
standing the structure of the system. This is ex-
ceedingly difficult for large legacy systems and
requires a different approach to program under-
standing than has been used for programming-
in-the-small [6]. The difference in scale from
systems of 1,000 lines to 1,000,000 lines can-
not be over-emphasized. In the million-lines-
of-code range, we need tools to help us read
programs; text (code) by itself is not very help-
ful. By “read” one does not mean interpreting
each line of source code like a human compiler.
Rather, tools should help us “read” the high-
level design inherent in the architecture, to gain
an understanding of the gestalt of the entire sys-
tem. Documentation has traditionally served
an important role in this regard. Yet as the
next section describes, traditional approaches
to program documentation do not scale up well.



3 Documenting software

The importance of high-quality documentation
in program understanding is widely recognized
[7]. Without it, the only source of reliable in-
formation is the source code itself [8]. While
architectural rediscovery may not be a prob-
lem for a single developer,! or even for a small
team (while they are together), it is a problem
for long-term large-system evolution. Software
engineers and technical managers base many
of their project-related decisions on their un-
derstanding of the architecture of the software
systems they are responsible for. While they
rely on original design documents, maintenance
histories, and experienced project members (if
they are available) to help them understand
how a program works, internal documentation
1s often their primary source of information.
Hence, the most obvious way to support pro-
gram comprehension i1s to produce and main-
tain adequate documentation [9].

This section describes three deficiencies of
traditional documentation techniques and in-
troduces documenting-in-the-large as an alter-
native for documenting legacy software sys-
tems.

3.1 Documenting-in-the-small

Documentation techniques have not really
changed very much in thirty years; most soft-
ware documentation is still targeted towards in-
the-small activities. Documenting isolated al-
gorithms and data structures is a useful way
to gain local understanding, and one-paragraph
headers at the top of source files, which attempt
to describe the main purpose of the module,
are invariably read by maintainers. However,
for large system evolution, this type of docu-
mentation rarely addresses the need of the soft-
ware engineer to gain an overview of the en-
tire system or of selected subsystems. It is left
to the documentation’s user to piece together
these low-level descriptions to form high-level
abstractions.

1Even this point could be debated. If the program
is sufficiently large or complex, a programmer may have
trouble understanding code written just months ago.
Consequently, his or her mental model of the system’s
structure becomes fuzzy at best.

The system-level in-the-large documentation
that does survive for legacy systems was prob-
ably written during the software’s initial de-
sign; rarely does 1t accurately reflect the cur-
rent implementation. As the software evolves,
the design document is left untouched while the
implementation drifts farther and farther away
from the original designer’s intent.

Creation of in-the-small documentation is
usually left to the individual developers and
maintainers. Unfortunately, documenting soft-
ware rarely ranks high on their list of activi-
ties [10]. Tt is often considered something to
be put off until the last possible moment; in
many cases, it 1s postponed indefinitely. While
there do exist model programmers who care-
fully document design and implementation de-
cisions while working on a piece of code, usually
documentation is tacked on as an afterthought.
Maintenance is often crisis-driven [11]; pres-
sures of day-to-day development seem to take
precedence over documentation. As changes to
the program continue, the original documenta-
tion becomes increasingly out-of-date.

Even if the documentation is created and
maintained, it provides just a single perspec-
tive: that of its author. Although each person
may have different objectives, everyone will see
the same thing: in-line and block commentary
with the source code, and original design docu-
ments and maintenance logs.? Hence, such doc-
umentation is not well-suited to serve its many
different readers, all of whom should be able to
use the same underlying information—at dif-
ferent levels of detail. For example, different
levels of documentation are required for the ca-
sual user of a program, for the developer famil-
iar with the code, for the maintainer unfamiliar
with the system, for testers and technical writ-
ers trying to understand its functionality, and
for project management personnel looking for
“the big picture”: an external view of the sys-
tem’s architecture and history [12, 13, 14]. Tt
would be far better to be able to provide doc-
uments that describe system architecture from
multiple perspectives. In this way, each user
would be provided with views of the program
that best suited his or her needs.

Thus, traditional approaches to software

2 Assuming these documents exist.



documentation suffer from at least three major
flaws. The documentation produced is: (1) in-
the-small; (2) usually out-of-date; and (3) pro-
vides just one perspective.

3.2 Documenting-in-the-large

Legacy software systems are too large and ill-
structured to be solved by current documenta-
tion techniques. Understanding these systems
involves uncovering the system-level design of
software: discovering the kinds of modules and
subsystems used and the way these modules
and subsystems are organized. This level of
abstraction 1s called the software architecture
level [15, 16].

Managing complexity and supporting evolu-
tion are two fundamental problems with large-
scale software systems [17]. As the size of soft-
ware systems increases, the design problems go
beyond the algorithms and data structures of
computation [18]. Without proper documen-
tation or aid, gaining an appreciation of the
overall structure of such systems is a daunting
task. Yet it is essential that one understand the
structure of a large system to work with it ef-
fectively. At this level, the objects of interest
are subsystems and their interactions. Before
looking at details; one looks for global struc-
ture: what modules the system comprises, how
are they organized, and how they interact.

Although the proper use of information hid-
ing and separation of concerns can make sys-
tem structure simpler, it is not a panacea. It
leads to a proliferation of small parts, so much
so that it is difficult to understand their inter-
relationships [19]. Since good software engi-
neering design suggests that modules be kept
relatively small, the number of modules in a
large system is significant [20]. For example,
in a system of 500,000 lines, with roughly 200
lines per module, there would be 2,500 mod-
ules. This i1s an order of magnitude more than
there are lines of code in each module. It would
seem clear that we need a way of documenting
this meta-modularization of modules into sub-
systems.

As a result of this structural complexity, the
majority of the errors introduced during main-
tenance are a result of inadequate understand-
ing on the part of the programmer of how his

or her modification affects the rest of the sys-
tem. The clearer and more accurate the men-
tal mode of the system and how the piece fits
into the whole, the less likely are errors of this
kind to occur. Therefore, the accuracy of the
programmer’s mental model is of critical impor-
tance. Program understanding is the process of
acquiring and updating this model. The prob-
lems can be ameliorated by documentation that
makes the global structure visible and thus can
impart an understanding of the overall struc-
ture. Global structural visibility of large sys-
tems 1s essential to our ability to understand
them. However, documenting structure at the
global level alone 1s not sufficient. A system de-
composition must satisfy local readability and
global structural visibility if it is to promote
understanding [21].

Most human beings visualize structure
graphically. Software designers often describe
the architecture of particular systems using
block diagrams of the major system compo-
nents and labels that refer to their major func-
tions. Modern interactive systems with graphi-
cal display capabilities facilitate the direct ma-
nipulation, processing, and presentation of in-
formation in graphical form. The use of textual
representations is still the predominant form of
programming; the use of visual programming
languages for programming-in-the-large is rel-
atively new [22]. While a program is logically
a hierarchical structure, the program source is
physically flat. Compilers are adept at recon-
structing the syntactic hierarchy; humans have
the much more difficult task of reconstructing
the logical hierarchy. This poor representation
of programs is a hindrance to program under-
standing.

For documentation purposes, one is often
forced to convert diagrams of system structure
to a textual form for computer processing.’
The textual representation then becomes the
primary one and the diagrams frequently be-
come obsolete and ignored. Modern systems
make i1t possible for such diagrams to become
an integral part of the systems they represent.
It would seem that the traditional approach to

3For example, module interconnection languages
such as NuMIL [23] are often used to represent mod-
ule structure and interactions.



the problem is now outdated; switching to tex-
tual form is no longer necessary.

4 Documenting software

structure

Section 2 shows clearly that any response to the
software evolution challenge must address the
problems of effectively documenting software
structure. The proposed solution to these prob-
lems is based on providing a flexible method
of identifying, documenting, representing, and
presenting the structural aspects of software ar-
chitecture through reverse engineering. This
entire process is called redocumenting-in-the-
large.

Parnas coined the term “design through doc-
umentation” [24]. Our approach is to make
the documentation a “live” representation of
the source code, not separate text. If the doc-
umentation s the structure, and vice versa,
no discrepancy exists [25]. The rest of this
section describes the basis for documenting
software structure: virtual subsystem stratifi-
cations (VSS’s) and software interconnection
models (IM’s).

4.1 VSS’s

Classical architecture has concepts that are de-
sirable for flexible software architecture, includ-
ing multiple views and architectural styles. For
example, a building architect would provide one
representation of the building to the carpenter,
perhaps another to the plumber, and yet an-
other to the buyer. For software, we presently
do with just one view: the implementation.
Keeping with the building analogy, this is like
a building with no outer skin and all the details
exposed: it makes understanding of the overall
architecture very difficult.

A virtual architecture imposes a logical
structure on a physical system. Limiting mod-
ularizations to those supported by file systems
and programming languages 1s not sufficient
to support the multiple representations desired
for documenting-in-the-large. Instead, virtual
modularizations impose logical clustering on
user-defined artifacts (subsystems). Stratifica-
tion means to divide into groups and/or to form

Viy | [
Layers[

Time

it

Artifacts

Figure 1: Evolutionary VSS’s

into layers. It is through stratification and vir-
tual modularization that one represents two di-
mensions of software structure: inter-layer and
intra-layer dependencies, respectively.

It would seem that just these two layers are
not enough, however. A third dimension is re-
quired to represent multiple views [26]. One
then can represent a software system as a cube,
with each two-dimensional “slice” a particular
stratification. Taken together, these slices form
a complete set of documentation for a software
system—rfor one release. To support multiple
releases and change information, a fourth di-
mension may be used. A four-dimensional hy-
percube 1s the result: a three-dimensional cube
moving through time. A depiction of this con-
cept is presented in Figure 1.

Hierarchical subsystem structures are cre-
ated through the reverse engineering process
described in [27]. They can be used to im-
pose logical structure on legacy systems. Since
prolonged maintenance tends to degrade soft-
ware structure, it is sometimes advantageous to
disregard the existing modularization based on
the source code’s physical structure. Instead,
one can construct aggregations of software arti-
facts based on whatever clustering and selection
criteria are deemed appropriate for enhancing
the understanding of the entire system or of se-
lected subsystems of relevance. Different views
of the software system may be produced for
diverse audiences by using different clustering
guidelines. Moreover, these views may coexist
simultaneously and are kept up-to-date auto-
matically [28].

It is important in program understanding to
construct program representations that involve



Intra-layer IM = ({artifact}, {depends-on})
Inter-layer IM = ({subsystem}, {is-part-of})
Inter-release IM = ({predicates}, {satisfies})

Figure 2: Sample interconnection models

concepts from the application domain. Often,
they will not be directly represented in the code
and may only be known informally by the main-
tainer [29]. Virtual subsystems can be used to
represent such implicit mappings. They can be
used to understand and describe existing soft-
ware systems for risk analysis and project man-
agement purposes [30].

4.2 IM’s

Interconnection models are a formalism used
to describe relationships among objects in
a software system as a set of tuples [31]:
IM = ({objects}, {relationships}) .
The granularity of the inter-object relation-
ships depends on the programming language,
the support environment, and the visibility con-
trol mechanisms used [32].

This set of tuples conveniently maps to a
graph structure, with the objects being nodes
and the relationships being attributed arcs be-
tween the nodes. As a formalism, IM’s also have
the advantage of allowing structural queries to
be performed on the VSS’s. IM’s can be gen-
eralized to represent arbitrary interconnections
among objects. For example, a novel interpre-
tation of the visual and spatial relationships
among objects and images in a graphical sys-
tem is described in [33].

There are several other such useful inter-
connection models that are applicable to pro-
gram understanding. For example, intra-layer
dependencies are well-modeled by relationships
such as the unit and syntactic interconnection
model. Inter-layer dependencies define how one
layer is related to another. Examples include
composition, nesting, and inheritance. De-
pendencies between structural alternatives may
be represented by maps. Finally, dependen-
cies that support inter-release structural im-
pact analysis may be modeled by variants of

the semantic interconnection model. Examples
of these are shown in Figure 2.

5 Summary

Legacy software systems require a different ap-
proach to software documentation than has tra-
ditionally been used. As an aid in program
understanding for large, evolving software sys-
tems, documenting software structure plays a
key role. One way of producing accurate in-
the-large documentation is through reverse en-
gineering. Through this process, one is able to
to produce accurate “operational” design docu-
ments describing the architecture of the soft-
ware system’s current state—mnot that of the
original system before numerous maintenance
changes were made.

An approach to supporting software evo-
lution by identifying, documenting, represent-
ing, and presenting the structural aspects of a
system’s architecture was presented. The ap-
proach makes use of virtual subsystem stratifi-
cations representing multiple abstract views of
a software system. It addresses the three prob-
lems of traditional in-the-small documentation
techniques outlined in Section 3.

A unique aspect of this approach is that the
structural documentation produced is always
up-to-date, since it is based on the underlying
source code. Moreover, the structural redocu-
mentation does not involve physically restruc-
turing the code (although this might be a de-
sirable outcome); the documentation produced
represents virtual (re)modularizations at vari-
ous levels of detail.
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