
Management Decision Support

Through Reverse Engineering Technologyyz

Scott R. Tilley

Department of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

Tel: (604) 721-7294, Fax: (604) 721-7292
E-mail: stilley@csr.uvic.ca

Abstract

Managers of large software systems face enor-

mous challenges when it comes to making in-

formed project-related decisions. They require

a high-level understanding of the entire sys-

tem and in-depth information on selected com-

ponents. Unfortunately, many software sys-

tems are so complex and/or old that such in-

formation is not readily available. Reverse

engineering|the process of extracting system

abstractions and design information from exist-

ing software systems|can provide some of this

missing information. This paper outlines how

a software system can bene�t from reverse en-

gineering, and describes how management per-

sonnel can use the information provided by this

process as an aid in making informed decisions

related to large software projects.

yThis work was supported in part by the IRIS Fed-

eral Centre of Excellence, the Natural Sciences and

Engineering Research Council of Canada, the British

Columbia Advanced Systems Institute, the Science

Council of British Columbia, the University of Victo-

ria, and IBM Canada Ltd.
zThis paper is based on material contained in IBM

Technical Report TR-74.086.

Reprinted from Proceedings of CASCON '92,

(Toronto, Ontario; November 9-11, 1992), pp. 319-

328.

1 Introduction

Project management, like software mainte-

nance, cannot be performed without a su�cient

understanding of the entire software system.

This is a di�cult task for software that is 10-25

years old and generally in poor condition. Con-

tributing factors include the lack of accurate

documentation, the sheer size of the system,

the unstructured programmingmethods used in

the system's design, the fact that the original

system designers, managers, and programmers

may no longer be available, and the complica-

tion that the software has been changed several

times since its �rst release, and thus has evolved

into something di�erent than the original [4].

This problem is exacerbated for management

personnel because they may lack in-depth tech-

nical knowledge of the product(s) they are man-

aging. They rely on data provided by senior

members of their department, \gut" feelings,

and experience. Anything that can increase

their understanding of the software system(s)

they are responsible for and aid them in mak-

ing important project-related decisions|such

as where to allocate precious funds, where to

place key personnel, and where to concentrate

e�ort for maximum pay-back|would be bene-

�cial. Reverse engineering is one way of doing

this.

Reverse engineering is the process of extract-

ing system abstractions and design information

from existing software systems. This informa-

tion can then be used for subsequent develop-

ment, maintenance, re-engineering, and project

management purposes. This process involves



the identi�cation of software artifacts in the

subject system, and the aggregation of these

artifacts to form more abstract system repre-

sentations. Through reverse engineering, the

overall structure of the subject system can be

determined and some of its architectural de-

sign information recovered. An approach to re-

verse engineering based on building hierarchies

of subsystem structures out of software build-

ing blocks is outlined in [9]. This approach is

supported by Rigi1 [15], a versatile system and

framework under development at the Univer-

sity of Victoria for discovering and analyzing

the structure of large software systems.

This paper describes how a software system

can bene�t from reverse engineering. In partic-

ular, it focuses on how software analysis tools

such as Rigi can be used to aid management de-

cisions related to large software projects. The

next section brie
y outlines the reverse engi-

neering process. Section 3 describes how the

information produced by this process can be

used to aid in management decisions. Finally,

Section 4 reports on some of our early experi-

ence of applying and using Rigi on real-world

software systems.

2 The reverse engineering

process

The goal of this paper is to describe how one

uses the information produced by reverse engi-

neering a software system, not to detail the re-

verse engineering process itself. Nevertheless,

some background on the reverse engineering

process helps one understand how the generated

information is used. A survey of several state-

of-the-art program understanding techniques is

given in [21]. A description of our reverse engi-

neering environment can be found in [13].

The process of reverse engineering a subject

system involves two distinct phases [1]:

1. The identi�cation of the system's current

components and their dependencies.

2. The extraction of system abstractions and

design information.

1Rigi is named after a mountain in central

Switzerland.

During the process of reverse engineering, the

subject system is not altered, although addi-

tional information about it is generated. In

contrast, the process of re-engineering typically

consists of a reverse engineering phase, followed

by a forward engineering or re-implementation

phase which alters the subject system.

In our approach, the �rst phase of the re-

verse engineering process|the extraction of

software artifacts|is automatic and language-

dependent. It essentially involves parsing of

the subject system and storing the artifacts

in a repository. Some of our early work re-

sulted in a graph model for software struc-

tures and a graph editor supporting the model

[11]. By software structure we mean a col-

lection of artifacts that software engineers use

to form mental models when designing, imple-

menting, integrating, inspecting, or analyzing

software systems. Artifacts include software

components such as procedures, modules, sub-

systems, and interfaces; dependencies among

components such as supplier-client, composi-

tion, and control-
ow relations; and attributes

such as component type, interface size, and in-

terconnection strength. The artifacts are stored

in an underlying database speci�cally designed

to represent graph structures [3]. The Rigi

graph editor allows the users to edit, maintain,

and explore the objects stored in the repository.

Our approach to the second phase is semi-

automatic and features language-independent

subsystem composition methods which gener-

ate hierarchies of subsystems [14, 10]. Subsys-

tem composition is the process of constructing

composite software components out of building

blocks such as variables, procedures, modules,

and subsystems. Hierarchical subsystem struc-

tures are formed by imposing equivalence rela-

tions on the resource-
ow graphs of the source

code. These relations embody software engi-

neering principles concerning module interac-

tions such as low coupling and strong cohesion

[18]. We have also formulated software quality

criteria and measures based on exact interfaces

and established software engineering principles

to evaluate the resultant subsystem structures

[16, 17, 20]. These measures are not meant to

be absolute; they are used to judge the rela-

tive merits of one system decomposition with



respect to another.2

The generated structures embody visual and

spatial information which serve as organiza-

tional axes for the exploration and presentation

of the composed subsystem structures. These

structures can be augmented with views: tex-

tual (and potentially hypermedia) annotations

that highlight di�erent aspects of the software

system under investigation [25]. Our semi-

automatic reverse engineering methodology can

serve as a precursor for maintenance and re-

engineering applications, as a front-end for con-

ceptual modeling and design recovery tools, as

a documentation and program-understanding

aid for large software systems, and as input to

project decision-making processes.

3 Management decision

support

If one views maintenance as \reuse-oriented

software development" [2], reverse engineer-

ing can bene�t everyone involved in software

production (e.g., maintainers, developers, doc-

umenters, managers, and testers). There

have been several areas identi�ed as criti-

cal to improving software maintenance and

(re)development, and recapture technologies are

one of them. Simply put, recapture technolo-

gies attempt to recover the original design in an

existing software system by using reverse en-

gineering and various program understanding

tools. This knowledge can then be reused for

further maintenance. With the cost of software

maintenance routinely consuming upwards of

50% of a product's life-cycle and budget [26],

any savings in maintenance will have a signi�-

cant impact on lowering the overall project cost.

It can also a�ect the quality of the software by

reusing tested components, domain knowledge,

and information|something that is becoming

increasingly important in today's competitive

marketplace.

Some of the greatest bene�ts of reverse en-

gineering a software system can be realized

by management personnel. Project manage-

ment and planning at most corporations is a

2We plan on augmenting thesemeasureswith metrics

commonly found in many CASE packages, such as func-

tions points and cyclomatic complexity, in the future.

complicated process. The software systems for

which they are responsible exist in various life-

cycle stages: new product development, test-

ing, maintenance of existing code, and di�erent

versions. They must also manage the human el-

ement of the project: identify the strengths of

team members, allocate resources based on var-

ious needs (both personal and �nancial), incor-

porate new personnel into the project, and com-

pensate for the departure of experienced sta�.

Other considerations include: funding, experi-

ence and talents of the people available, sched-

ules, impact on other products and develop-

ment groups, and market analysis. All of these

things make management very di�cult. This

problem is exacerbated when the complexity of

the project, both technical and organizational,

threatens to overwhelm even the most prepared

managerial personnel.

Bene�ts produced by reverse engineering

include aiding system comprehension, change

analysis, and recovering lost information. To

illustrate these bene�ts, we will use three rep-

resentative views of a subject system: yacc;

a parser generator in the UNIX3 system [7].

The yacc program consists of 5 modules and

roughly 2500 lines of C. It is complex enough

to require some e�ort to understand (if one

had only the source code to look at), yet sim-

ple enough to highlight some of the advantages

to management personnel of reverse engineer-

ing. The views were produced using Rigi dur-

ing yacc's reverse engineering, which was com-

pleted by the author in roughly two hours.

3.1 Aiding system comprehension

When faced with the task of maintaining a soft-

ware system, system comprehension is typically

the most important prerequisite. Managers re-

quire a high-level understanding of the entire

system. They may also need in-depth informa-

tion on selected parts of the system to aid them

in making decisions related to project manage-

ment. The educating of new members of the

development team is a never-ending and impor-

tant aspect of most software projects. These

education sessions are often held informally, by

having new employees sit down with experi-

enced developers who then explain the code to

3UNIX is a trademark of AT&T Bell Labs.



Figure 1: An overview of yacc's architecture and call structure.

them. Rigi o�ers a semi-automated alternative

to these problems.

The Rigi system uses views to direct the fo-

cus on visual data and guide the exploration

of spatial data. A view represents a particu-

lar state and display of a constructed software

model. Di�erent views of the same software

model can be used to address a variety of tar-

get audiences and applications. Hence the same

software system can be used by all those in-

volved in the project, including development,

testing, communications, and management.

For example, Figure 1 represents a high-level

overview of yacc's architecture and call struc-

ture. Such a view might be used by manage-

ment to gain an overall understanding of the

entire software system. Icons represent di�er-

ent artifacts of the software system: the icon

Utilities

represents the Utilities subsystem,

and
main

represents the function main().

Arcs connecting icons represent resource-


ow relationships between artifacts. A thin line

represents a call dependency, a dashed line a

data dependency, and a dotted line a composite

dependency. If detailed knowledge concerning

any particular subsystem is required, the user

can open any icon to explore the underlying

subsystem, or select any arc between icons and

obtain exact dependency information. For ex-

ample, Figure 2 shows the details of the Table

Optimization subsystem, which is part of the

Output Tables subsystem.

Graphical representations have long been ac-



Figure 2: A detailed view of the Table Optimization subsystem.

cepted as comprehension aids [5]. The Rigi sys-

tem allows the software system to be viewed in

a variety of ways. This graphical representation

of information can greatly increase one's under-

standing of the software system. The new em-

ployees can work with the code and explore the

entire system on their own, using the spatial

and visual information, views, and linked docu-

mentation [24] to guide them in understanding

the software system. As they learn about the

system by examining the source code and the

tutorial views, they can record the information

by creating new views, either for themselves or

for the whole maintenance team. Rigi allows

views to be either local or global, which enables

the user to save views of the software system

that they �nd useful for their particular task,

yet still be able to look at di�erent views of the

same software system created by other mem-

bers of the team. Such a facility is considered

essential in modern hypermedia systems [8].

Rigi also provides textual information (e.g.,

software quality measures) that augment the

graphical displays. The same mechanism can

be used to present an overview (or a detailed

discussion) of some or all of the software sys-

tem to other management personnel, other de-

partments, or other development teams. In this

way, a high-level understanding of the system

could be disseminated throughout the organi-

zation, and would facilitate reuse.

Views can be collected into sequences to

form related sets of documentation; to represent

guided tours for tutorial purposes; to highlight

system components that need to be analyzed

and understood when performing speci�c main-



tenance or re-engineering tasks; to summarize

change, impact, or performance analyses; or to

annotate critical sections with measurements

that serve as input to decision-making (e.g.,

project priorities or personnel assignments).

For example, visible in all three �gures is the

Load View window. This window contains a

scrollable list of views that may be investigated

at the user's convenience. Taken together, these

views form an introductory tutorial describing

some of yacc's operational design. Such a tu-

torial might be used as an aid to program un-

derstanding.

It is not just time that is spent (re)learning

the system. The monetary cost of understand-

ing software is signi�cant, and it is multiplied

every time a new person must learn the system.

The views generated by reverse engineering can

greatly reduce the overall cost of software by

lessening the time required to understand the

system. When programmers are assigned par-

ticular maintenance tasks, often they have little

knowledge of the overall system design; they

cannot see the forest for the trees. Managers

may have the opposite problem: they may un-

derstand the overall system architecture, but

do not know how speci�c parts of the system

function. A system such as Rigi addresses this

problem by providing views at various levels of

detail.

3.2 Change analysis

Changing existing components is a common

problem in large, evolving software systems,

and occurs in both the development and main-

tenance phases of the software life cycle. Pro-

grammers become unwilling to alter a low-level

component (also termed basic interface) since

they are unable to estimate the e�ects of the

change on the entire system. In the develop-

ment of large systems, it is important to know

what has changed, and what e�ect the change

has on the system, because those e�ects can be

far reaching and perhaps unanticipated. Man-

agement also becomes unwilling to allow the al-

teration of central components because of their

potential e�ects on the rest of the system. Soft-

ware maintenance performed without su�cient

understanding of its impact is unreliable and

untestable.

A graphical representation of the reverse en-

gineered software system, such as that provided

by the Rigi editor, can provide crucial informa-

tion for such investigations. Many development

managers still rely on SLOC4 measurements

when assessing the amount of work needed to

perform a particular task. This number is usu-

ally not indicative of the actual amount of work

done, and does not encourage reuse, because a

smaller SLOC count is interpreted as less work

by many managers. A better estimate of the

work required can be provided by Rigi's pre-

sentation of a�ected subsystems and modules.

Reverse engineering exposes system struc-

ture and module dependencies. The graphi-

cal representation of the system makes central

and fringe components immediately obvious.

One can then tailor activities|such as testing,

monetary and personnel allocation, and subse-

quent development e�orts|on the components

desired. Managers can quickly see where key

experienced personnel should be placed (on the

central components), and where newer team

members can work (on fringe components). In

this way, the optimum pay-o� is achieved.

Views such as that shown in Figure 3 might

be used to assign work to personnel in areas of

the system best suited to their knowledge and

experience, based on visual information pro-

vided by the spatial relationships of the cen-

tral and fringe components, and on the tex-

tual reports indicating subsystem resource in-

terconnections. Experienced programmers can

be assured of working on the more critical as-

pects of the system (those with the most de-

pendencies, or the most importance), while less

experienced personnel can work on more iso-

lated parts of the system. For example, the

Exact Interface report shown in Figure 3 indi-

cates that the Create Tables and Data sub-

systems exchange just one object. This means

that changes made to either of these two subsys-

tems will not a�ect the other|unless it is the

looksets data structure that is being changed

in the Data subsystem.

The information contained in the report can

also be used by the supporting environment|

for example by the compiler to limit recompi-

lation. The CMI (Changing Module Interfaces)

4SLOC refers to \source lines of code."



Figure 3: Exact dependency between two subsystems.

implementation [22, 23] of the global interface

analysis algorithms [6] analyze, predict, and

limit the e�ects of a change to a basic inter-

face in a software system. CMI is part of the

Rigi project, but has not yet been integrated

into the Rigi environment.

The same information can also be used to

identify components whose maintenance would

improve (or impact) system performance the

most. For example, enhancement requests from

customers can be assessed based on the amount

of work and time needed to add the code, and

the number of subsystems a�ected. This type of

\predictability" is a desirable aspect in software

evolution [19]. Similarly, the impact analysis

can be used to identify where regression test-

ing must be done. Many development groups

simply run their entire test suite after a change

to the system; although this method is thor-

ough, it is tremendously expensive and poten-

tially wasteful. Rigi can identify the a�ected

modules of a change and management can use

this information to direct testing e�orts. At the

same time they can be assured that the testing

being done is adequate to cover the enhance-

ment (or bug �x). Providing customers with

periodic maintenance �xes for a large software

system is expensive, so it should be done right

the �rst time.

3.3 Recovering lost information

Reverse engineering can produce consistent and

accurate documentation. As large systems

evolve over their product life-cycle, informa-

tion concerning the original design is lost. Even



if the system was designed using modern soft-

ware engineering principles of modularization

and information hiding, the original design be-

comes compromised during maintenance. Cor-

rective maintenance and enhancements that

seem small soon resemble patches instead of

smoothly extending the original code. A side

e�ect of these changes is that documentation is

usually not kept up-to-date.

Even worse is documentation that no longer

re
ects reality; the code has changed but the

documentation has not. One often relies heav-

ily on programmers who know the system in-

timately, or one invests substantial amounts of

time for maintainers to explore and learn the

system. Given time, most programmers will at-

tempt to keep in-line documentation and source

code synchronized, but project work books and

higher level design documents are rarely up-

dated to re
ect maintenance. If they are, the

updates resemble appendices to the original,

and the documentation quickly becomes di�-

cult to follow. The reverse engineering facilities

provided by Rigi allows one to produce an accu-

rate \operational" design document describing

the architecture of the software system's cur-

rent state|not that of the original system be-

fore numerous maintenance changes were made.

New software development projects may

use and produce a variety of technical doc-

uments, such as design speci�cations, perfor-

mance goals, functional speci�cations, design

decisions, and maintenance logs. These may

be found in-line with the source code, as tra-

ditional hardcopy documents, or (in the most

modern systems) on-line in various hypertext

and multimedia formats. Unfortunately, older

software systems rarely provide such a wide

range of documentation. Typically, all that

is available is a single document that is used

to represent the entire system. However, dur-

ing reverse engineering a variety of documents

and graphical representations of the system can

be generated by Rigi. These views of the sys-

tem can be saved and replayed at a later date,

serving as tutorials for other team members,

as operational design documents, or as system

overviews for management personnel and exter-

nal documentation. The project team can rely

less on chief (or original) programmers|who

may not be available|and more on automated

tools to provide them with the knowledge they

need to better understand the system.

Rigi can be e�ectively used to aid reuse of

older code not speci�cally written for reuse by

�rst reverse engineering it, identifying compo-

nents based on selected search criteria, and

then re-engineering the chosen components if

needed. In Rigi these components can be in-

dividual functions, aggregate modules, or com-

plete subsystems. Reverse engineering will fa-

cilitate the recovery of some of the original de-

sign. The salvaging of \corporate knowledge"

from earlier projects can greatly improve the

quality of new projects, as well as reducing cy-

cle time from design to delivery. Full design

recovery is the next step after reverse engineer-

ing, and semi-automatic tools such as Rigi are

a step in this direction.

4 Summary

Rigi is a versatile framework for analyzing large

software systems. Many of its capabilities can

be utilized to document existing software sys-

tems for program understanding and mainte-

nance purposes, and utilized by management

personnel to support some of the complex de-

cisions they face in overall project manage-

ment. These decisions include resource alloca-

tion, personnel placement, system comprehen-

sion, investigations into reuse potential, and in-

formation recovery.

We have successfully applied our reverse

engineering methodology to several real-world

software systems. In 1990 we analyzed the

Practice Manager: a 57,000 line COBOL pro-

gram by Osler Management Inc. of Victo-

ria [12]. It is a comprehensive software sys-

tem for the management of physician's prac-

tices in British Columbia. The main purpose

of the analysis was to build up-to-date subsys-

tem structures to assess the quality of the en-

tire system with respect to maintenance, and

to identify subsystems that are candidates for

re-engineering.

In 1991 we analyzed an 82,000 line C pro-

gram for the isotope separator experiment at

TRIUMF (TRI-University Meson Facility) in

Vancouver. The main objective of the analysis

was to identify components for re-engineering.



In late 1992 we will analyze a large commer-

cial database management system in conjunc-

tion with IBM Canada Ltd., with the goal of

reverse engineering the existing system to im-

prove the quality of subsequent maintenance

and development.

References

[1] R.S. Arnold. Tutorial on software reengineer-

ing. In CSM'90: Proceedings of the 1990

Conference on Software Maintenance, (San
Diego, California; November 26-29, 1990).

IEEE Computer Society Press (Order Number
2091), November 1990.

[2] Victor R. Basili. Viewing maintenance as
reuse-oriented software development. IEEE

Software, 7(1):19{25, January 1990.

[3] T. Brandes and K. Lewerentz. GRAS: A non-

standard database system within a software
development environment. In Proceedings of

the Workshop on Software Engineering Envi-

ronments for programming-in-the-large, (Har-
wichport, Maine), pages 113{121, June 1985.

[4] Robert N. Britcher. Re-engineering soft-

ware: A case study. IBM Systems Journal,

29(4):551{567, 1990.

[5] Mariano Consens, Alberto Mendelzon, and

Arthur Ryman. Visualizing and querying soft-
ware structures. In ICSE'14: Proceedings of

the 14th International Conference on Software

Engineering, (Melbourne, Australia; May 11-
15, 1992), pages 138{156, May 1992.

[6] R. Hood, K. Kennedy, and H. M�uller. E�cient

recompilation of module interfaces in a soft-

ware development environment. In Proceedings
of the 2nd ACM SIGSOFT/SIGPLAN Sympo-

sium on Practical Software Development Envi-

ronments, pages 180{189, 1987.

[7] Stephen C. Johnson. Yacc: Yet another
compiler-compiler. In UNIX Programmer's

Manual, chapter PS1:15. USENIX Associa-

tion, 1986.

[8] Hermann Maurer. Why hypermedia systems

are important. University of Victoria LACIR
invited talk, September 23, 1992.

[9] H.A. M�uller, B.D. Corrie, and S.R. Tilley.

Spatial and visual representations of software

structures: A model for reverse engineering.
Technical Report TR-74.086, IBM Canada

Ltd., April 1992.

[10] H.A. M�uller, B.D. Corrie, S.R. Tilley, and
M.A. Orgun. Rigi | A system for reverse en-

gineering. VHS videotape, University of Vic-
toria, December 1991.

[11] H.A. M�uller and K. Klashinsky. Rigi |

A system for programming-in-the-large. In
ICSE '10: Proceedings of the 10th Interna-

tional Conference on Software Engineering,

(Ra�es City, Singapore; April 11-15, 1988),
pages 80{86, April 1988. IEEE Computer So-

ciety Press (Order Number 849).

[12] H.A. M�uller, J.R. M�ohr, and J.G. McDaniel.
Applying software re-engineering techniques to

health information systems. In Proceedings

of the IMIA Working Conference on Software
Engineering in Medical Informatics (SEMI),

(Amsterdam; October 8-10, 1990), October

1990.

[13] H.A. M�uller, S.R. Tilley, M.A. Orgun, B.D.

Corrie, and N.H. Madhavji. A reverse engi-
neering environment based on spatial and vi-

sual software interconnection models. In SIG-

SOFT '92: Proceedings of the Fifth ACM SIG-
SOFT Symposium on Software Development

Environments, (Tyson's Corner, Virginia; De-

cember 9-11, 1992), pages 88{98, December
1992. In ACM Software Engineering Notes,

17(5).

[14] H.A. M�uller and J.S. Uhl. Composing sub-
system structures using (k,2)-partite graphs.

In Proceedings of the Conference on Software

Maintenance 1990, (San Diego, California;
November 26-29, 1990), pages 12{19, Novem-

ber 1990. IEEE Computer Society Press (Or-

der Number 2091).

[15] Hausi A. M�uller. Rigi { A Model for Software

System Construction, Integration, and Evolu-
tion based on Module Interface Speci�cations.

PhD thesis, Rice University, August 1986.

[16] Hausi A. M�uller. Verifying software quality cri-
teria using an interactive graph editor. Tech-

nical Report DCS-139-IR, University of Victo-

ria, August 1990.

[17] Hausi A. M�uller and Brian D. Corrie. Measur-

ing the quality of subsystem structures. Tech-

nical Report DCS-193-IR, University of Victo-
ria, November 1991.

[18] G.L. Myers. Reliable software through compos-
ite design. Petrocelli/Charter, 1975.

[19] David Notkin. Software evolution. In Proceed-

ings of the Workshop on Future Directions in

Software Engineering, (Schloss Dagstuhl, Ger-

many), February 1992.



[20] Mehmet A. Orgun, Hausi A. M�uller, and
Scott R. Tilley. Discovering and evaluating

subsystem structures. Technical Report DCS-
194-IR, University of Victoria, April 1992.

[21] Santanu Paul, Atul Prakash, Erich Buss, and
John Henshaw. Theories and techniques of

program understanding. In Proceedings of

CASCON'91, (Toronto, Ontario; October 28-
30, 1991), pages 37{53. IBM Canada Ltd., Oc-

tober 1991.

[22] Scott R. Tilley. Changing module interfaces.

Master's thesis, University of Victoria, May

1989.

[23] Scott R. Tilley and Hausi A. M�uller. Chang-

ing module interfaces in a software develop-
ment environment. In Proceedings of the Sixth

National Conference on Ada Technology, (Ar-

lington, Virginia; March 14-17, 1988), pages
500{508, March 1988.

[24] Scott R. Tilley and Hausi A. M�uller. INFO:
A simple document annotation facility. In

Proceedings of SIGDOC '91: The 9th Annual

International Conference on Systems Docu-
mentation, (Chicago, Illinois; October 10-12,

1991), pages 30{36, October 1991.

[25] Scott R. Tilley, Hausi A. M�uller, and

Mehmet A. Orgun. Documenting software

systems with views. In Proceedings of SIG-
DOC '92: The 10th International Conference

on Systems Documentation, (Ottawa, Ontario;

October 13-16, 1992), pages 211{219, October
1992. ACM Order Number 613920.

[26] Nicholas Zvegintzov. Nanotrends. Datama-
tion, pages 106{116, August 1983.

About the author

Scott R. Tilley is currently on leave from IBM

Canada Ltd., pursuing a Ph.D. in Computer

Science at the University of Victoria. His main

�eld of research is software engineering in gen-

eral, and reusability and reverse engineering in

particular. His research is carried out under the

umbrella of the Rigi project, supervised by Dr.

Hausi Muller. Scott's M.Sc. work focused on

change analysis and optimal recompilation. His

current interests include higher-order abstrac-

tion mechanisms, hypermedia, and program un-

derstanding.

He can be reached at the University of Victo-

ria, or at the IBM Canada Ltd. Laboratory, 844

Don Mills Rd., 22/121/844/TOR, North York,

ON, Canada M3C 1V7. His e-mail addresses at

IBM are tilley@torolab6.vnet.ibm.com on

Internet, and TOROLAB6(TILLEY) on VNet.


