RevENgE

Using an Integrated
Reverse Engineering
Environment

University of Toronto

McGill University

University of Victoria

IBM Centre for Advanced Studies

Goal

Reverse engineering concerns the analysis of
existing software systems to make them
moreunderstandable for maintenance and
evolution purposes. The importance of reverse
engineering has grown tremendously as
corporations face mounting maintenance and
re-engineeringcosts for large legacy software
systems.

The goal of this three-year project, carried out
in conjunction with IBM Software Solutions
Toronto Laboratory Centre for Advanced
Studies (CAS), is to develop and apply an
integrated reverse engineering environment.

In particular, the project addresses:

= software analysis technology,

= tool integration technology,

= software engineering repositories, and
= program visualization.

Milestones for the first year focused on
building the individual components: reverse
engineering tools and the software repository.
Year two focused on integrating the tools with
the repository. Year three focused on
identifying useful analysis scenarios and
applying the toolset to understand particular
programs. These milestones have been met,
resulting in an integrated and extensible
environment with a diverse range of program
understanding capabilities.

Reference System

CLIPS (C Language Integrated Production
System), an expert system shell developed by
NASA, was used as a reference program for
testing the RevENgE tools and repository.
CLIPS consists of about 60 files containing over
700 functions (around 30 KLOC). Although it is
small by industrial standards, it is a nontrivial
production application that may typically be
assigned to a software engineer. Particular
analyses of CLIPS are detailed in the demaos.

Research contributions

Our reverse engineering environment supports
data and control integration through a loosely
coupled architecture, a common schema, and a
repository developed by the University of
Toronto. Pattern-matching and search
algorithms are provided by McGill University.
These components are complemented by a
graphical editor developed by the University
of Victoria.

University of Toronto

The team at the University of
Toronto developed an open,
extensible, and modular
system architecture. This
consists of two components: a
repository with a global
schema and a data server.

The schema, defined with the W
object-oriented information

model Telos, supports data integration among
the tools. The data server is responsible for
transporting information among tools either
through the repository or directly. ObjectStore
is used as the persistent storage manager.

-

The repository accommodates all data handled
by any one of the integrated tools (currently
REFINE and Rigi). The common and consistent
conceptual schema is a superset of the
subschemas required by the individual tools.
The use of metaclasses makes it possible to
support new tools and new types of
information as they appear. Dynamic schema
evolution is also supported.

Scalability of the interface to the repository
became an issue as larger programs such as
CLIPS were loaded into the repository.
Although the repository is able to store large
amounts of information, the tool workspaces
are more limited. In practice, only small
portions are actually needed for particular
analyses. Additional operations were added to
retrieve smaller portions of the repository
information and to deal with partial data.
Some optimizations were made to save objects
in the persistent store more efficiently.

For more information, contact:
Martin Stanley
mts@ai.toronto.edu

Machine A

Machine B

Machine C

Control Integration Data Integration

McGill University

The McGill team developed a
collection of statement-level
pattern matching algorithms
using the Software Refinery.
This effort is known as
Ariadne, complementing the
high-level structural pattern
matching work done by the
University of Victoria team.

The current McGill focus is on developing
efficient algorithms for statement-level pattern

matching. The algorithms form data bindings
or common references across procedures,
calculate tuples of quality and complexity
metric values for the functions, select functions
with similar complexity, match code through
dynamic programming, analyze accesses to
variables, and perform system clustering.

For more information, contact;
Christos Magdalinos
magdal@cs.mcgill.ca

University of Victoria

The team at the University of
Victoria enhanced a system ||
for reverse engineering
known as Rigi. Rigi provides
a parsing system suitable for
imperative programming
languages, offers a
programmable graph editor,
and supports conceptual
modelling of the application domain.

Through these extensible capabilities, Rigi
realizes a meta reverse engineering tool that
can be adapted to understand large
information spaces, such as source code,
documentation, and the Web. Rigi is
instantiated for a particular domain by the
analyst actively forming a conceptual model,
extending the core functionality, and
personalizing the user interface.

Since one of the main goals of RevEngE is to
ease integration among multiple tools, a high
degree of flexibility and scalability in the editor
is of paramount importance. Toward this goal,
Rigi supports end-user programming whereby
an analyst can control many aspects of the
editor using scripts written in Tcl. In particular,
this interface was used to informally integrate
ART (Analysis of Redundancy in Text), a tool
developed by J. Howard Johnson at the
National Research Council in Canada.

For more information, contact:
Michael J. Whitney
mwhitney@csr.uvic.ca

